Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938532024> ?p ?o ?g. }
- W2938532024 endingPage "838" @default.
- W2938532024 startingPage "827" @default.
- W2938532024 abstract "Abstract This study investigated using the stress wave method to predict the properties of thermally modified wood by means of an adaptive neuro-fuzzy inference system (ANFIS) and neural network (NN) modeling. The stress wave was detected using a pair of accelerometers and an acoustic emission (AE) sensor, and the effect of heat treatment (HT) on the physical and mechanical properties of wood as well as wave velocity and AE signal is discussed. The AE signal was processed in the time and time-frequency domains using wavelet analysis and different features were extracted for network training. The auto-associative NN is used as a dimensional reduction method to decrease the dimension of the extracted AE features and enhance the ANFIS performance. It was shown that while the stress wave velocity using the accelerometer did not result in an accurate model, the network performance significantly increased when trained with the AE features. The AE signal exhibited a significant correlation with wood treatment and porosity. The best ANFIS performance corresponded to predicting the wood swelling coefficient, equilibrium moisture content (EMC) and water absorption (WA), respectively. However, the AE signal did not seem suitable for predicting the wood density and hardness. The performance of ANFIS was compared with the “group method of data handling” (GMDH) NN. Both the ANFIS and GMDH networks showed higher accuracy than the multivariate linear regression (MVLR) model." @default.
- W2938532024 created "2019-04-25" @default.
- W2938532024 creator A5012383099 @default.
- W2938532024 creator A5041076499 @default.
- W2938532024 creator A5045814524 @default.
- W2938532024 creator A5067180918 @default.
- W2938532024 date "2019-04-11" @default.
- W2938532024 modified "2023-10-14" @default.
- W2938532024 title "Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling" @default.
- W2938532024 cites W1269619601 @default.
- W2938532024 cites W1535567721 @default.
- W2938532024 cites W1563969757 @default.
- W2938532024 cites W1589935349 @default.
- W2938532024 cites W1964592508 @default.
- W2938532024 cites W1971691104 @default.
- W2938532024 cites W1985711226 @default.
- W2938532024 cites W1999253628 @default.
- W2938532024 cites W2004775000 @default.
- W2938532024 cites W2005593128 @default.
- W2938532024 cites W2024420613 @default.
- W2938532024 cites W2028767288 @default.
- W2938532024 cites W2029106573 @default.
- W2938532024 cites W2041547574 @default.
- W2938532024 cites W2041957974 @default.
- W2938532024 cites W2048173702 @default.
- W2938532024 cites W2061491296 @default.
- W2938532024 cites W2065243557 @default.
- W2938532024 cites W2084282107 @default.
- W2938532024 cites W2088155499 @default.
- W2938532024 cites W2090988443 @default.
- W2938532024 cites W2136912693 @default.
- W2938532024 cites W2145165331 @default.
- W2938532024 cites W2159697904 @default.
- W2938532024 cites W2322963174 @default.
- W2938532024 cites W2326558650 @default.
- W2938532024 cites W2335429617 @default.
- W2938532024 cites W2484887051 @default.
- W2938532024 cites W2565852104 @default.
- W2938532024 cites W2566447407 @default.
- W2938532024 cites W2758084661 @default.
- W2938532024 cites W2771325897 @default.
- W2938532024 cites W2800171378 @default.
- W2938532024 cites W2801990882 @default.
- W2938532024 cites W2900452985 @default.
- W2938532024 cites W2904638995 @default.
- W2938532024 cites W2904716144 @default.
- W2938532024 cites W4233006243 @default.
- W2938532024 cites W4239655581 @default.
- W2938532024 cites W4381137274 @default.
- W2938532024 cites W62275428 @default.
- W2938532024 doi "https://doi.org/10.1515/hf-2018-0289" @default.
- W2938532024 hasPublicationYear "2019" @default.
- W2938532024 type Work @default.
- W2938532024 sameAs 2938532024 @default.
- W2938532024 citedByCount "36" @default.
- W2938532024 countsByYear W29385320242019 @default.
- W2938532024 countsByYear W29385320242020 @default.
- W2938532024 countsByYear W29385320242021 @default.
- W2938532024 countsByYear W29385320242022 @default.
- W2938532024 countsByYear W29385320242023 @default.
- W2938532024 crossrefType "journal-article" @default.
- W2938532024 hasAuthorship W2938532024A5012383099 @default.
- W2938532024 hasAuthorship W2938532024A5041076499 @default.
- W2938532024 hasAuthorship W2938532024A5045814524 @default.
- W2938532024 hasAuthorship W2938532024A5067180918 @default.
- W2938532024 hasConcept C111919701 @default.
- W2938532024 hasConcept C134306372 @default.
- W2938532024 hasConcept C153180895 @default.
- W2938532024 hasConcept C154945302 @default.
- W2938532024 hasConcept C159985019 @default.
- W2938532024 hasConcept C174598085 @default.
- W2938532024 hasConcept C186060115 @default.
- W2938532024 hasConcept C186108316 @default.
- W2938532024 hasConcept C192562407 @default.
- W2938532024 hasConcept C195975749 @default.
- W2938532024 hasConcept C196216189 @default.
- W2938532024 hasConcept C199360897 @default.
- W2938532024 hasConcept C26546657 @default.
- W2938532024 hasConcept C2779843651 @default.
- W2938532024 hasConcept C2780150128 @default.
- W2938532024 hasConcept C33923547 @default.
- W2938532024 hasConcept C40636538 @default.
- W2938532024 hasConcept C41008148 @default.
- W2938532024 hasConcept C47432892 @default.
- W2938532024 hasConcept C50644808 @default.
- W2938532024 hasConcept C58166 @default.
- W2938532024 hasConcept C86803240 @default.
- W2938532024 hasConcept C89805583 @default.
- W2938532024 hasConceptScore W2938532024C111919701 @default.
- W2938532024 hasConceptScore W2938532024C134306372 @default.
- W2938532024 hasConceptScore W2938532024C153180895 @default.
- W2938532024 hasConceptScore W2938532024C154945302 @default.
- W2938532024 hasConceptScore W2938532024C159985019 @default.
- W2938532024 hasConceptScore W2938532024C174598085 @default.
- W2938532024 hasConceptScore W2938532024C186060115 @default.
- W2938532024 hasConceptScore W2938532024C186108316 @default.
- W2938532024 hasConceptScore W2938532024C192562407 @default.
- W2938532024 hasConceptScore W2938532024C195975749 @default.