Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938565099> ?p ?o ?g. }
- W2938565099 abstract "Combination of low-tensor rank techniques and the Fast Fourier transform (FFT) based methods had turned out to be prominent in accelerating various statistical operations such as Kriging, computing conditional covariance, geostatistical optimal design, and others. However, the approximation of a full tensor by its low-rank format can be computationally formidable. In this work, we incorporate the robust Tensor Train (TT) approximation of covariance matrices and the efficient TT-Cross algorithm into the FFT-based Kriging. It is shown that here the computational complexity of Kriging is reduced to $mathcal{O}(d r^3 n)$, where $n$ is the mode size of the estimation grid, $d$ is the number of variables (the dimension), and $r$ is the rank of the TT approximation of the covariance matrix. For many popular covariance functions the TT rank $r$ remains stable for increasing $n$ and $d$. The advantages of this approach against those using plain FFT are demonstrated in synthetic and real data examples." @default.
- W2938565099 created "2019-04-25" @default.
- W2938565099 creator A5018717402 @default.
- W2938565099 creator A5069489614 @default.
- W2938565099 creator A5087474564 @default.
- W2938565099 date "2019-04-21" @default.
- W2938565099 modified "2023-09-24" @default.
- W2938565099 title "Kriging in Tensor Train data format" @default.
- W2938565099 cites W1517366800 @default.
- W2938565099 cites W1544398811 @default.
- W2938565099 cites W1555994268 @default.
- W2938565099 cites W1657955287 @default.
- W2938565099 cites W1690316246 @default.
- W2938565099 cites W1967077133 @default.
- W2938565099 cites W1968507337 @default.
- W2938565099 cites W1978134494 @default.
- W2938565099 cites W1984028041 @default.
- W2938565099 cites W1985533362 @default.
- W2938565099 cites W1986676404 @default.
- W2938565099 cites W1989786408 @default.
- W2938565099 cites W1993482030 @default.
- W2938565099 cites W1996869553 @default.
- W2938565099 cites W1998258511 @default.
- W2938565099 cites W2000294883 @default.
- W2938565099 cites W2001518794 @default.
- W2938565099 cites W2005041367 @default.
- W2938565099 cites W2007598972 @default.
- W2938565099 cites W2011732752 @default.
- W2938565099 cites W2016125303 @default.
- W2938565099 cites W2031216664 @default.
- W2938565099 cites W2035211832 @default.
- W2938565099 cites W2043307585 @default.
- W2938565099 cites W2056842996 @default.
- W2938565099 cites W2072119983 @default.
- W2938565099 cites W2072427860 @default.
- W2938565099 cites W2078465266 @default.
- W2938565099 cites W2079559649 @default.
- W2938565099 cites W2084501074 @default.
- W2938565099 cites W2091396986 @default.
- W2938565099 cites W2091861914 @default.
- W2938565099 cites W2096056204 @default.
- W2938565099 cites W2096070062 @default.
- W2938565099 cites W2117292363 @default.
- W2938565099 cites W2131934095 @default.
- W2938565099 cites W2134572726 @default.
- W2938565099 cites W2160251536 @default.
- W2938565099 cites W2170816806 @default.
- W2938565099 cites W2409626527 @default.
- W2938565099 cites W2496219407 @default.
- W2938565099 cites W2583592518 @default.
- W2938565099 cites W2808075698 @default.
- W2938565099 cites W2915405535 @default.
- W2938565099 cites W2962823441 @default.
- W2938565099 cites W2962942717 @default.
- W2938565099 cites W2963551920 @default.
- W2938565099 cites W2964311702 @default.
- W2938565099 cites W299010663 @default.
- W2938565099 cites W50417968 @default.
- W2938565099 doi "https://doi.org/10.48550/arxiv.1904.09668" @default.
- W2938565099 hasPublicationYear "2019" @default.
- W2938565099 type Work @default.
- W2938565099 sameAs 2938565099 @default.
- W2938565099 citedByCount "0" @default.
- W2938565099 crossrefType "posted-content" @default.
- W2938565099 hasAuthorship W2938565099A5018717402 @default.
- W2938565099 hasAuthorship W2938565099A5069489614 @default.
- W2938565099 hasAuthorship W2938565099A5087474564 @default.
- W2938565099 hasBestOaLocation W29385650991 @default.
- W2938565099 hasConcept C102519508 @default.
- W2938565099 hasConcept C103755468 @default.
- W2938565099 hasConcept C105795698 @default.
- W2938565099 hasConcept C11413529 @default.
- W2938565099 hasConcept C114614502 @default.
- W2938565099 hasConcept C134306372 @default.
- W2938565099 hasConcept C154881674 @default.
- W2938565099 hasConcept C155281189 @default.
- W2938565099 hasConcept C164226766 @default.
- W2938565099 hasConcept C166386157 @default.
- W2938565099 hasConcept C178650346 @default.
- W2938565099 hasConcept C203024314 @default.
- W2938565099 hasConcept C2524010 @default.
- W2938565099 hasConcept C28826006 @default.
- W2938565099 hasConcept C33676613 @default.
- W2938565099 hasConcept C33923547 @default.
- W2938565099 hasConcept C41008148 @default.
- W2938565099 hasConcept C75172450 @default.
- W2938565099 hasConcept C81692654 @default.
- W2938565099 hasConceptScore W2938565099C102519508 @default.
- W2938565099 hasConceptScore W2938565099C103755468 @default.
- W2938565099 hasConceptScore W2938565099C105795698 @default.
- W2938565099 hasConceptScore W2938565099C11413529 @default.
- W2938565099 hasConceptScore W2938565099C114614502 @default.
- W2938565099 hasConceptScore W2938565099C134306372 @default.
- W2938565099 hasConceptScore W2938565099C154881674 @default.
- W2938565099 hasConceptScore W2938565099C155281189 @default.
- W2938565099 hasConceptScore W2938565099C164226766 @default.
- W2938565099 hasConceptScore W2938565099C166386157 @default.
- W2938565099 hasConceptScore W2938565099C178650346 @default.
- W2938565099 hasConceptScore W2938565099C203024314 @default.
- W2938565099 hasConceptScore W2938565099C2524010 @default.