Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938574033> ?p ?o ?g. }
- W2938574033 endingPage "1287" @default.
- W2938574033 startingPage "1243" @default.
- W2938574033 abstract "Text is a typical example of unstructured and heterogeneous data in which massive useful knowledge is embedded. Sentiment analysis is used to analyze and predict sentiment polarities of the text. This paper provides a survey and gives comparative analyses of the latest articles and techniques pertaining to lexicon-based, traditional machine learning-based, deep learning-based, and hybrid sentiment analysis approaches. These approaches have their own superiority and get the state-of-the-art results on diverse sentiment analysis tasks. Besides, a brief sentiment analysis example in the tourism domain is displayed, illustrating the entire process of sentiment analysis. Furthermore, we create a large table to compare the pros and cons of different types of approaches, and discuss some insights with respect to research trends. In addition, a lot of important sentiment analysis datasets are summarized in this survey." @default.
- W2938574033 created "2019-04-25" @default.
- W2938574033 creator A5018137331 @default.
- W2938574033 creator A5019041750 @default.
- W2938574033 creator A5027470187 @default.
- W2938574033 creator A5043977717 @default.
- W2938574033 creator A5064220732 @default.
- W2938574033 date "2019-07-01" @default.
- W2938574033 modified "2023-09-24" @default.
- W2938574033 title "Survey on Classic and Latest Textual Sentiment Analysis Articles and Techniques" @default.
- W2938574033 cites W113211615 @default.
- W2938574033 cites W1490512328 @default.
- W2938574033 cites W1596967103 @default.
- W2938574033 cites W1832693441 @default.
- W2938574033 cites W1970592556 @default.
- W2938574033 cites W1975297192 @default.
- W2938574033 cites W1975428268 @default.
- W2938574033 cites W1977766834 @default.
- W2938574033 cites W1983578042 @default.
- W2938574033 cites W1988939740 @default.
- W2938574033 cites W1993816389 @default.
- W2938574033 cites W2002437555 @default.
- W2938574033 cites W2015525779 @default.
- W2938574033 cites W2019759670 @default.
- W2938574033 cites W2025954161 @default.
- W2938574033 cites W2031998113 @default.
- W2938574033 cites W2041587709 @default.
- W2938574033 cites W2044890349 @default.
- W2938574033 cites W2044937105 @default.
- W2938574033 cites W2048658075 @default.
- W2938574033 cites W2064675550 @default.
- W2938574033 cites W2065069176 @default.
- W2938574033 cites W2082066599 @default.
- W2938574033 cites W2084791978 @default.
- W2938574033 cites W2085750684 @default.
- W2938574033 cites W2090276733 @default.
- W2938574033 cites W2091632079 @default.
- W2938574033 cites W2094665138 @default.
- W2938574033 cites W2102381086 @default.
- W2938574033 cites W2120400822 @default.
- W2938574033 cites W2135813353 @default.
- W2938574033 cites W2149167588 @default.
- W2938574033 cites W2156413587 @default.
- W2938574033 cites W2158997610 @default.
- W2938574033 cites W2160660844 @default.
- W2938574033 cites W2164358929 @default.
- W2938574033 cites W2170436435 @default.
- W2938574033 cites W2212852081 @default.
- W2938574033 cites W2215376118 @default.
- W2938574033 cites W2250966211 @default.
- W2938574033 cites W2251394420 @default.
- W2938574033 cites W2253519362 @default.
- W2938574033 cites W2253847393 @default.
- W2938574033 cites W2306941105 @default.
- W2938574033 cites W2346975490 @default.
- W2938574033 cites W2387022776 @default.
- W2938574033 cites W2395789346 @default.
- W2938574033 cites W2401379394 @default.
- W2938574033 cites W2427312199 @default.
- W2938574033 cites W2467355409 @default.
- W2938574033 cites W2472490454 @default.
- W2938574033 cites W2498221483 @default.
- W2938574033 cites W2502485837 @default.
- W2938574033 cites W2528239278 @default.
- W2938574033 cites W2540645427 @default.
- W2938574033 cites W2556605533 @default.
- W2938574033 cites W2560101148 @default.
- W2938574033 cites W2562607067 @default.
- W2938574033 cites W2579737817 @default.
- W2938574033 cites W2583643061 @default.
- W2938574033 cites W2586286573 @default.
- W2938574033 cites W2736808794 @default.
- W2938574033 cites W2738417325 @default.
- W2938574033 cites W2757016771 @default.
- W2938574033 cites W2767439512 @default.
- W2938574033 cites W2789511524 @default.
- W2938574033 cites W2789784111 @default.
- W2938574033 cites W2790250716 @default.
- W2938574033 cites W2794338210 @default.
- W2938574033 cites W2822523832 @default.
- W2938574033 cites W2832586745 @default.
- W2938574033 cites W2858620482 @default.
- W2938574033 cites W2896734887 @default.
- W2938574033 cites W2905446659 @default.
- W2938574033 cites W2963891433 @default.
- W2938574033 cites W2964288660 @default.
- W2938574033 cites W3098239359 @default.
- W2938574033 cites W3099233101 @default.
- W2938574033 cites W3123492911 @default.
- W2938574033 cites W4211186029 @default.
- W2938574033 cites W4239510810 @default.
- W2938574033 cites W4253555784 @default.
- W2938574033 cites W4293004632 @default.
- W2938574033 doi "https://doi.org/10.1142/s0219622019300015" @default.
- W2938574033 hasPublicationYear "2019" @default.
- W2938574033 type Work @default.
- W2938574033 sameAs 2938574033 @default.
- W2938574033 citedByCount "27" @default.