Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938578532> ?p ?o ?g. }
- W2938578532 endingPage "242" @default.
- W2938578532 startingPage "221" @default.
- W2938578532 abstract "Generating replicable and empirically valid models of human decision-making is crucial for the scientific accuracy and reproducibility of agent-based models. A two-fold challenge in developing models of decision-making is a lack of high resolution and high quality behavioral data and the need for more transparent means of translating these data into models. A common and largely successful approach to modeling is hand-crafting agent decision heuristics from qualitative field interviews. This empirically-based, qualitative approach successfully incorporates contextual decision making, heterogeneous preferences, and decision strategies. However, it is labor intensive and often leads to models that are hard to replicate, thereby limiting the scale and scope over which such methods can be usefully applied. A potential solution to these problems is provided by new approaches in natural language processing, which can use textual sources ranging from field interview transcripts to unstructured data from the web to capture and represent human cognition. Here we use word embeddings, a vector-based representation of language, to create agents that reason using similarity comparison. This approach proves to be effective at mirroring theoretical expectations for human decision biases across a range of natural language decision-making tasks. We provide a proof-of-concept agent-based model that illustrates how the agents we create can be readily deployed to study cultural diffusion. The agent-based model replicates previously found results with the added benefit of qualitative interpretability. The agent architecture we propose is able to mirror human likelihood assessments from natural language and offers a new way to model agent cognitive processes for a broad array of agent-based modeling use cases." @default.
- W2938578532 created "2019-04-25" @default.
- W2938578532 creator A5015432988 @default.
- W2938578532 creator A5016462041 @default.
- W2938578532 creator A5041672160 @default.
- W2938578532 creator A5045930592 @default.
- W2938578532 creator A5082379114 @default.
- W2938578532 date "2019-04-01" @default.
- W2938578532 modified "2023-10-12" @default.
- W2938578532 title "Using word embeddings to generate data-driven human agent decision-making from natural language" @default.
- W2938578532 cites W1486777056 @default.
- W2938578532 cites W1577025164 @default.
- W2938578532 cites W1662133657 @default.
- W2938578532 cites W1672202071 @default.
- W2938578532 cites W1714704734 @default.
- W2938578532 cites W1958547877 @default.
- W2938578532 cites W1971309476 @default.
- W2938578532 cites W1987353489 @default.
- W2938578532 cites W1992531910 @default.
- W2938578532 cites W2006012747 @default.
- W2938578532 cites W2008109016 @default.
- W2938578532 cites W2026357871 @default.
- W2938578532 cites W2039742252 @default.
- W2938578532 cites W2044098639 @default.
- W2938578532 cites W2076329683 @default.
- W2938578532 cites W2091069417 @default.
- W2938578532 cites W2116481527 @default.
- W2938578532 cites W2132339004 @default.
- W2938578532 cites W2140290607 @default.
- W2938578532 cites W2151389381 @default.
- W2938578532 cites W2151789396 @default.
- W2938578532 cites W2153791066 @default.
- W2938578532 cites W2162829624 @default.
- W2938578532 cites W2162915529 @default.
- W2938578532 cites W2250539671 @default.
- W2938578532 cites W2251803266 @default.
- W2938578532 cites W2513172296 @default.
- W2938578532 cites W2514262342 @default.
- W2938578532 cites W2552259814 @default.
- W2938578532 cites W2553838540 @default.
- W2938578532 cites W2562464660 @default.
- W2938578532 cites W2599913900 @default.
- W2938578532 cites W2604753731 @default.
- W2938578532 cites W264722012 @default.
- W2938578532 cites W2765195368 @default.
- W2938578532 cites W2782772014 @default.
- W2938578532 cites W2787883929 @default.
- W2938578532 cites W2889011686 @default.
- W2938578532 cites W2963657312 @default.
- W2938578532 cites W3098820870 @default.
- W2938578532 cites W4229545570 @default.
- W2938578532 cites W4254195438 @default.
- W2938578532 cites W947140380 @default.
- W2938578532 doi "https://doi.org/10.1007/s10707-019-00345-2" @default.
- W2938578532 hasPublicationYear "2019" @default.
- W2938578532 type Work @default.
- W2938578532 sameAs 2938578532 @default.
- W2938578532 citedByCount "14" @default.
- W2938578532 countsByYear W29385785322019 @default.
- W2938578532 countsByYear W29385785322020 @default.
- W2938578532 countsByYear W29385785322021 @default.
- W2938578532 countsByYear W29385785322022 @default.
- W2938578532 countsByYear W29385785322023 @default.
- W2938578532 crossrefType "journal-article" @default.
- W2938578532 hasAuthorship W2938578532A5015432988 @default.
- W2938578532 hasAuthorship W2938578532A5016462041 @default.
- W2938578532 hasAuthorship W2938578532A5041672160 @default.
- W2938578532 hasAuthorship W2938578532A5045930592 @default.
- W2938578532 hasAuthorship W2938578532A5082379114 @default.
- W2938578532 hasBestOaLocation W29385785321 @default.
- W2938578532 hasConcept C111919701 @default.
- W2938578532 hasConcept C119857082 @default.
- W2938578532 hasConcept C127705205 @default.
- W2938578532 hasConcept C154945302 @default.
- W2938578532 hasConcept C195324797 @default.
- W2938578532 hasConcept C204321447 @default.
- W2938578532 hasConcept C2522767166 @default.
- W2938578532 hasConcept C2779439875 @default.
- W2938578532 hasConcept C2781067378 @default.
- W2938578532 hasConcept C41008148 @default.
- W2938578532 hasConceptScore W2938578532C111919701 @default.
- W2938578532 hasConceptScore W2938578532C119857082 @default.
- W2938578532 hasConceptScore W2938578532C127705205 @default.
- W2938578532 hasConceptScore W2938578532C154945302 @default.
- W2938578532 hasConceptScore W2938578532C195324797 @default.
- W2938578532 hasConceptScore W2938578532C204321447 @default.
- W2938578532 hasConceptScore W2938578532C2522767166 @default.
- W2938578532 hasConceptScore W2938578532C2779439875 @default.
- W2938578532 hasConceptScore W2938578532C2781067378 @default.
- W2938578532 hasConceptScore W2938578532C41008148 @default.
- W2938578532 hasIssue "2" @default.
- W2938578532 hasLocation W29385785321 @default.
- W2938578532 hasOpenAccess W2938578532 @default.
- W2938578532 hasPrimaryLocation W29385785321 @default.
- W2938578532 hasRelatedWork W138037485 @default.
- W2938578532 hasRelatedWork W2119430799 @default.
- W2938578532 hasRelatedWork W2977842567 @default.
- W2938578532 hasRelatedWork W3006943036 @default.