Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938667347> ?p ?o ?g. }
- W2938667347 endingPage "77" @default.
- W2938667347 startingPage "61" @default.
- W2938667347 abstract "A stabilized finite element scheme is developed for computations of buoyancy driven 3D-axisymmetric viscoelastic two-phase flows with insoluble surfactants. The numerical scheme solves the Navier–Stokes equations for the fluid flow, Giesekus constitutive equation for the effects of viscoelasticity and simultaneously an evolution equation for the surfactant concentration on the interface. The interface is tracked by the coupled arbitrary Lagrangian–Eulerian (ALE) and Lagrangian approach. The interface-resolved moving meshes allow accurate incorporation of the interfacial tension force, Marangoni forces and the jumps in the material properties. Further, the tangential gradient operator technique is used to handle the curvature approximation in a semi-implicit manner. An one-level Local Projection Stabilization (LPS), which is based on an enriched approximation space and a discontinuous projection space, where both spaces are defined on a same mesh is used to stabilize the model equations. The stabilized numerical scheme allows us to use isoparametric second order conforming finite elements enriched with cubic bubble functions for velocity and viscoelastic stress, second order finite elements for surfactant concentration and discontinuous first order finite element for pressure. A number of computations are performed for a Newtonian drop rising in a viscoelastic fluid column and a viscoelastic drop rising in a Newtonian fluid column with insoluble surfactants on the interface. The influence of the Marangoni number, initial surfactant concentration and Peclet number on the dynamics of the rising drop are analyzed. The numerical study shows that a viscoelastic drop rising in a Newtonian fluid column develops an indentation around the rear stagnation point with a dimpled shape without insoluble surfactants. The presence of insoluble surfactants forces the drop to rise slowly but the drop at the tail end is pulled up more. However, a Newtonian drop rising in a viscoelastic fluid column experiences an extended trailing edge with a cusp-like shape without insoluble surfactants. The presence of surfactants pulls the tail end of the drop up slightly and makes the tail flatter with/without small undulations depending on the magnitude of the surfactant concentrations." @default.
- W2938667347 created "2019-04-25" @default.
- W2938667347 creator A5025792369 @default.
- W2938667347 creator A5082244505 @default.
- W2938667347 creator A5090414169 @default.
- W2938667347 date "2019-05-01" @default.
- W2938667347 modified "2023-09-26" @default.
- W2938667347 title "Simulation of viscoelastic two-phase flows with insoluble surfactants" @default.
- W2938667347 cites W1039384650 @default.
- W2938667347 cites W1972368368 @default.
- W2938667347 cites W1973166496 @default.
- W2938667347 cites W1976555404 @default.
- W2938667347 cites W1977402577 @default.
- W2938667347 cites W1983847872 @default.
- W2938667347 cites W1985432921 @default.
- W2938667347 cites W1986917744 @default.
- W2938667347 cites W1987576293 @default.
- W2938667347 cites W1990282067 @default.
- W2938667347 cites W1996692429 @default.
- W2938667347 cites W1997875358 @default.
- W2938667347 cites W1997882775 @default.
- W2938667347 cites W1999960847 @default.
- W2938667347 cites W2003006806 @default.
- W2938667347 cites W2007317432 @default.
- W2938667347 cites W2008568513 @default.
- W2938667347 cites W2010886796 @default.
- W2938667347 cites W2013619825 @default.
- W2938667347 cites W2013905864 @default.
- W2938667347 cites W2016447000 @default.
- W2938667347 cites W2017004889 @default.
- W2938667347 cites W2019704130 @default.
- W2938667347 cites W2021646799 @default.
- W2938667347 cites W2023293304 @default.
- W2938667347 cites W2028622812 @default.
- W2938667347 cites W2029984341 @default.
- W2938667347 cites W2036970825 @default.
- W2938667347 cites W2043057906 @default.
- W2938667347 cites W2043898053 @default.
- W2938667347 cites W2046237962 @default.
- W2938667347 cites W2046717923 @default.
- W2938667347 cites W2059385946 @default.
- W2938667347 cites W2064240269 @default.
- W2938667347 cites W2067852817 @default.
- W2938667347 cites W2069320489 @default.
- W2938667347 cites W2070299075 @default.
- W2938667347 cites W2070946962 @default.
- W2938667347 cites W2071284513 @default.
- W2938667347 cites W2071671952 @default.
- W2938667347 cites W2073897969 @default.
- W2938667347 cites W2079259475 @default.
- W2938667347 cites W2079447210 @default.
- W2938667347 cites W2082321678 @default.
- W2938667347 cites W2082384340 @default.
- W2938667347 cites W2093251719 @default.
- W2938667347 cites W2100550487 @default.
- W2938667347 cites W2103155453 @default.
- W2938667347 cites W2103887002 @default.
- W2938667347 cites W2104152474 @default.
- W2938667347 cites W2123378618 @default.
- W2938667347 cites W2124268718 @default.
- W2938667347 cites W2131036243 @default.
- W2938667347 cites W2135301926 @default.
- W2938667347 cites W2149228572 @default.
- W2938667347 cites W2151306679 @default.
- W2938667347 cites W2152271272 @default.
- W2938667347 cites W2153871741 @default.
- W2938667347 cites W2156881623 @default.
- W2938667347 cites W2157124331 @default.
- W2938667347 cites W2158830181 @default.
- W2938667347 cites W2158856246 @default.
- W2938667347 cites W2159618415 @default.
- W2938667347 cites W2165939556 @default.
- W2938667347 cites W2166029378 @default.
- W2938667347 cites W2170991985 @default.
- W2938667347 cites W2180776170 @default.
- W2938667347 cites W2191535505 @default.
- W2938667347 cites W2273541666 @default.
- W2938667347 cites W2475246973 @default.
- W2938667347 cites W2519095849 @default.
- W2938667347 cites W2572761701 @default.
- W2938667347 cites W2729063016 @default.
- W2938667347 cites W2783233093 @default.
- W2938667347 cites W2899573331 @default.
- W2938667347 cites W2905725259 @default.
- W2938667347 doi "https://doi.org/10.1016/j.jnnfm.2019.04.002" @default.
- W2938667347 hasPublicationYear "2019" @default.
- W2938667347 type Work @default.
- W2938667347 sameAs 2938667347 @default.
- W2938667347 citedByCount "4" @default.
- W2938667347 countsByYear W29386673472020 @default.
- W2938667347 countsByYear W29386673472021 @default.
- W2938667347 countsByYear W29386673472023 @default.
- W2938667347 crossrefType "journal-article" @default.
- W2938667347 hasAuthorship W2938667347A5025792369 @default.
- W2938667347 hasAuthorship W2938667347A5082244505 @default.
- W2938667347 hasAuthorship W2938667347A5090414169 @default.
- W2938667347 hasConcept C10899652 @default.
- W2938667347 hasConcept C121332964 @default.