Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938676525> ?p ?o ?g. }
- W2938676525 endingPage "119" @default.
- W2938676525 startingPage "111" @default.
- W2938676525 abstract "Abstract Background and objective Electrocardiogram is commonly used as a diagnostic tool for the monitoring of cardiac health and the detection of possible heart diseases. However, the procedure followed for the diagnosis of heart abnormalities is time consuming and prone to human errors. Thus, the development of computer-aided techniques for the automatic analysis of electrocardiogram signals is of vital importance for the diagnosis and prevention of heart diseases. The most serious outcome of coronary heart disease is the myocardial infarction, i.e., the rapid and irreversible damage of cardiac muscles, which, if not diagnosed and treated in time, continues to damage further the myocardial structure and function. In this paper we propose a novel approach for the automatic detection and localization of myocardial infarction from multi-lead electrocardiogram signals. Methods The proposed method initially reshapes the multidimensional signal into a third-order tensor structure and subsequently extracts feature representations in both Euclidean and Grassmannian space. In addition, two different methods are proposed for the mapping of the two different feature representations into a common Hilbert space before the final classification of signals. The first approach is based on the mapping of both Grassmannian and Euclidean features in a Reproducing Kernel Hilbert Space (RKHS), while the second one attempts to initially apply Vector of Locally Aggregated Descriptors (VLAD) encoding directly to Grassmann manifold and then concatenate the two VLAD representations. Results For the evaluation of the proposed method, we have conducted extensive tests using a publicly available dataset, namely PTB Diagnostic ECG database, containing 549 multi-lead ECG data recordings from 290 subjects and from different diagnostic classes. The method provides an excellent detection rate of 100%, and localization rate, i.e., 100% with the first fusion method and 99.7% with the second one. Conclusions The Experimental results presented in this paper show the superiority of the proposed methodology against a number of state-of-the-art approaches. The main advantage of the proposed approach is that it exploits better the intercorrelations between signals of different ECG leads, by extracting feature representations that lie in different geometrical spaces and contain complementary information with regard to the dynamics of signals." @default.
- W2938676525 created "2019-04-25" @default.
- W2938676525 creator A5020330356 @default.
- W2938676525 creator A5024126057 @default.
- W2938676525 creator A5035171427 @default.
- W2938676525 creator A5080005547 @default.
- W2938676525 date "2019-07-01" @default.
- W2938676525 modified "2023-09-26" @default.
- W2938676525 title "Multi-lead ECG signal analysis for myocardial infarction detection and localization through the mapping of Grassmannian and Euclidean features into a common Hilbert space" @default.
- W2938676525 cites W1605211334 @default.
- W2938676525 cites W1972003923 @default.
- W2938676525 cites W1984595010 @default.
- W2938676525 cites W2006322106 @default.
- W2938676525 cites W2010409115 @default.
- W2938676525 cites W2027645937 @default.
- W2938676525 cites W2041110545 @default.
- W2938676525 cites W2047181473 @default.
- W2938676525 cites W2109409043 @default.
- W2938676525 cites W2121916211 @default.
- W2938676525 cites W2129812935 @default.
- W2938676525 cites W2130773597 @default.
- W2938676525 cites W2131740154 @default.
- W2938676525 cites W2162800060 @default.
- W2938676525 cites W2182794916 @default.
- W2938676525 cites W2251133041 @default.
- W2938676525 cites W2291961022 @default.
- W2938676525 cites W2344001629 @default.
- W2938676525 cites W2345499740 @default.
- W2938676525 cites W2461649332 @default.
- W2938676525 cites W2495557304 @default.
- W2938676525 cites W2527796983 @default.
- W2938676525 cites W2538878479 @default.
- W2938676525 cites W2554962499 @default.
- W2938676525 cites W2702116941 @default.
- W2938676525 cites W2759912964 @default.
- W2938676525 cites W2888010882 @default.
- W2938676525 cites W2890072975 @default.
- W2938676525 cites W2912155302 @default.
- W2938676525 doi "https://doi.org/10.1016/j.bspc.2019.04.003" @default.
- W2938676525 hasPublicationYear "2019" @default.
- W2938676525 type Work @default.
- W2938676525 sameAs 2938676525 @default.
- W2938676525 citedByCount "13" @default.
- W2938676525 countsByYear W29386765252020 @default.
- W2938676525 countsByYear W29386765252021 @default.
- W2938676525 countsByYear W29386765252022 @default.
- W2938676525 countsByYear W29386765252023 @default.
- W2938676525 crossrefType "journal-article" @default.
- W2938676525 hasAuthorship W2938676525A5020330356 @default.
- W2938676525 hasAuthorship W2938676525A5024126057 @default.
- W2938676525 hasAuthorship W2938676525A5035171427 @default.
- W2938676525 hasAuthorship W2938676525A5080005547 @default.
- W2938676525 hasBestOaLocation W29386765252 @default.
- W2938676525 hasConcept C111919701 @default.
- W2938676525 hasConcept C120174047 @default.
- W2938676525 hasConcept C129782007 @default.
- W2938676525 hasConcept C153180895 @default.
- W2938676525 hasConcept C154945302 @default.
- W2938676525 hasConcept C162929932 @default.
- W2938676525 hasConcept C186450821 @default.
- W2938676525 hasConcept C199360897 @default.
- W2938676525 hasConcept C202444582 @default.
- W2938676525 hasConcept C2524010 @default.
- W2938676525 hasConcept C2778572836 @default.
- W2938676525 hasConcept C2779843651 @default.
- W2938676525 hasConcept C28490314 @default.
- W2938676525 hasConcept C33923547 @default.
- W2938676525 hasConcept C41008148 @default.
- W2938676525 hasConcept C62799726 @default.
- W2938676525 hasConceptScore W2938676525C111919701 @default.
- W2938676525 hasConceptScore W2938676525C120174047 @default.
- W2938676525 hasConceptScore W2938676525C129782007 @default.
- W2938676525 hasConceptScore W2938676525C153180895 @default.
- W2938676525 hasConceptScore W2938676525C154945302 @default.
- W2938676525 hasConceptScore W2938676525C162929932 @default.
- W2938676525 hasConceptScore W2938676525C186450821 @default.
- W2938676525 hasConceptScore W2938676525C199360897 @default.
- W2938676525 hasConceptScore W2938676525C202444582 @default.
- W2938676525 hasConceptScore W2938676525C2524010 @default.
- W2938676525 hasConceptScore W2938676525C2778572836 @default.
- W2938676525 hasConceptScore W2938676525C2779843651 @default.
- W2938676525 hasConceptScore W2938676525C28490314 @default.
- W2938676525 hasConceptScore W2938676525C33923547 @default.
- W2938676525 hasConceptScore W2938676525C41008148 @default.
- W2938676525 hasConceptScore W2938676525C62799726 @default.
- W2938676525 hasFunder F4320320300 @default.
- W2938676525 hasLocation W29386765251 @default.
- W2938676525 hasLocation W29386765252 @default.
- W2938676525 hasOpenAccess W2938676525 @default.
- W2938676525 hasPrimaryLocation W29386765251 @default.
- W2938676525 hasRelatedWork W171404572 @default.
- W2938676525 hasRelatedWork W1925100372 @default.
- W2938676525 hasRelatedWork W1988541099 @default.
- W2938676525 hasRelatedWork W2004776397 @default.
- W2938676525 hasRelatedWork W2023816398 @default.
- W2938676525 hasRelatedWork W2352688386 @default.
- W2938676525 hasRelatedWork W2783654391 @default.
- W2938676525 hasRelatedWork W2967104361 @default.