Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938781388> ?p ?o ?g. }
- W2938781388 endingPage "17" @default.
- W2938781388 startingPage "1" @default.
- W2938781388 abstract "The arterioles and venules (AV) classification of retinal vasculature is considered as the first step in the development of an automated system for analysing the vasculature biomarker association with disease prognosis. Most of the existing AV classification methods depend on the accurate segmentation of retinal blood vessels. Moreover, the unavailability of large-scale annotated data is a major hindrance in the application of deep learning techniques for AV classification. This paper presents an encoder-decoder based fully convolutional neural network for classification of retinal vasculature into arterioles and venules, without requiring the preliminary step of vessel segmentation. An optimized multiloss function is used to learn the pixel-wise and segment-wise retinal vessel labels. The proposed method is trained and evaluated on DRIVE, AVRDB, and a newly created AV classification dataset; and it attains 96%, 98%, and 97% accuracy, respectively. The new AV classification dataset is comprised of 700 annotated retinal images, which will offer the researchers a benchmark to compare their AV classification results." @default.
- W2938781388 created "2019-04-25" @default.
- W2938781388 creator A5017459474 @default.
- W2938781388 creator A5052614939 @default.
- W2938781388 date "2019-04-14" @default.
- W2938781388 modified "2023-09-29" @default.
- W2938781388 title "Multiloss Function Based Deep Convolutional Neural Network for Segmentation of Retinal Vasculature into Arterioles and Venules" @default.
- W2938781388 cites W1983374065 @default.
- W2938781388 cites W1995023030 @default.
- W2938781388 cites W2004862390 @default.
- W2938781388 cites W2031156627 @default.
- W2938781388 cites W2031489346 @default.
- W2938781388 cites W2033723371 @default.
- W2938781388 cites W2040118850 @default.
- W2938781388 cites W2040806095 @default.
- W2938781388 cites W2042988683 @default.
- W2938781388 cites W2045227075 @default.
- W2938781388 cites W2052710217 @default.
- W2938781388 cites W2054928682 @default.
- W2938781388 cites W2082571018 @default.
- W2938781388 cites W2093456586 @default.
- W2938781388 cites W2107219584 @default.
- W2938781388 cites W2117539524 @default.
- W2938781388 cites W2117935664 @default.
- W2938781388 cites W2119486327 @default.
- W2938781388 cites W2132519114 @default.
- W2938781388 cites W2134097396 @default.
- W2938781388 cites W2137055403 @default.
- W2938781388 cites W2145305441 @default.
- W2938781388 cites W2150769593 @default.
- W2938781388 cites W2152263083 @default.
- W2938781388 cites W2174711832 @default.
- W2938781388 cites W2263861417 @default.
- W2938781388 cites W2347185285 @default.
- W2938781388 cites W2507211415 @default.
- W2938781388 cites W2573296565 @default.
- W2938781388 cites W2593230217 @default.
- W2938781388 cites W2618884931 @default.
- W2938781388 cites W2724534590 @default.
- W2938781388 cites W2750911434 @default.
- W2938781388 cites W2774949955 @default.
- W2938781388 cites W2802388893 @default.
- W2938781388 cites W2808272537 @default.
- W2938781388 cites W2885490402 @default.
- W2938781388 cites W2900704915 @default.
- W2938781388 cites W2919115771 @default.
- W2938781388 cites W2963881378 @default.
- W2938781388 cites W312794020 @default.
- W2938781388 doi "https://doi.org/10.1155/2019/4747230" @default.
- W2938781388 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6487175" @default.
- W2938781388 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31111055" @default.
- W2938781388 hasPublicationYear "2019" @default.
- W2938781388 type Work @default.
- W2938781388 sameAs 2938781388 @default.
- W2938781388 citedByCount "13" @default.
- W2938781388 countsByYear W29387813882020 @default.
- W2938781388 countsByYear W29387813882021 @default.
- W2938781388 countsByYear W29387813882022 @default.
- W2938781388 countsByYear W29387813882023 @default.
- W2938781388 crossrefType "journal-article" @default.
- W2938781388 hasAuthorship W2938781388A5017459474 @default.
- W2938781388 hasAuthorship W2938781388A5052614939 @default.
- W2938781388 hasBestOaLocation W29387813881 @default.
- W2938781388 hasConcept C108583219 @default.
- W2938781388 hasConcept C118487528 @default.
- W2938781388 hasConcept C126838900 @default.
- W2938781388 hasConcept C12722491 @default.
- W2938781388 hasConcept C153180895 @default.
- W2938781388 hasConcept C154945302 @default.
- W2938781388 hasConcept C2778672379 @default.
- W2938781388 hasConcept C2780827179 @default.
- W2938781388 hasConcept C31972630 @default.
- W2938781388 hasConcept C41008148 @default.
- W2938781388 hasConcept C71924100 @default.
- W2938781388 hasConcept C81363708 @default.
- W2938781388 hasConcept C89600930 @default.
- W2938781388 hasConceptScore W2938781388C108583219 @default.
- W2938781388 hasConceptScore W2938781388C118487528 @default.
- W2938781388 hasConceptScore W2938781388C126838900 @default.
- W2938781388 hasConceptScore W2938781388C12722491 @default.
- W2938781388 hasConceptScore W2938781388C153180895 @default.
- W2938781388 hasConceptScore W2938781388C154945302 @default.
- W2938781388 hasConceptScore W2938781388C2778672379 @default.
- W2938781388 hasConceptScore W2938781388C2780827179 @default.
- W2938781388 hasConceptScore W2938781388C31972630 @default.
- W2938781388 hasConceptScore W2938781388C41008148 @default.
- W2938781388 hasConceptScore W2938781388C71924100 @default.
- W2938781388 hasConceptScore W2938781388C81363708 @default.
- W2938781388 hasConceptScore W2938781388C89600930 @default.
- W2938781388 hasLocation W29387813881 @default.
- W2938781388 hasLocation W29387813882 @default.
- W2938781388 hasLocation W29387813883 @default.
- W2938781388 hasLocation W29387813884 @default.
- W2938781388 hasLocation W29387813885 @default.
- W2938781388 hasOpenAccess W2938781388 @default.
- W2938781388 hasPrimaryLocation W29387813881 @default.
- W2938781388 hasRelatedWork W2005437358 @default.
- W2938781388 hasRelatedWork W2517104666 @default.