Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938843971> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2938843971 abstract "Point cloud is a set of points in 3D space, typically produced by a 3D scanner to capture the 3D representation of a scene. Semantic segmentation of 3D point cloud data where each point is assigned with a semantic class such as building, road, water and so on, has recently gained tremendous attention from data mining researchers and industrial practitioners. Accurate 3D-segmentation results can be used for constructing 3D scene for robotic navigation and assessing the city expansion. Dealing with point cloud data poses a huge challenge of irregular format as points are distributed irregularly unlike 2D pixel of an image or 3D voxel of a 3D model. A number of deep learning architectures have been proposed to model 3D point cloud to perform semantic segmentation. In this paper, we present a new case study of applying three novel deep learning architectures, PointNet, PointCNN and SPGraph, to an outdoor aerial survey point cloud dataset, whose features include intensity and spectral information (RGB). We then compare the results of 3D semantic segmentation from such networks in term of overall accuracy. The result shows that PointNet, PointCNN, and SPGraph achieve 83%, 72.7%, and 83.4% overall accuracy of semantic segmentation, respectively." @default.
- W2938843971 created "2019-04-25" @default.
- W2938843971 creator A5005257913 @default.
- W2938843971 creator A5013863637 @default.
- W2938843971 creator A5023506216 @default.
- W2938843971 creator A5025006860 @default.
- W2938843971 date "2019-01-01" @default.
- W2938843971 modified "2023-09-26" @default.
- W2938843971 title "3D Semantic Segmentation of Large-Scale Point-Clouds in Urban Areas Using Deep Learning" @default.
- W2938843971 cites W2022512855 @default.
- W2938843971 cites W2022685363 @default.
- W2938843971 cites W2121282310 @default.
- W2938843971 cites W2125416623 @default.
- W2938843971 cites W2190691619 @default.
- W2938843971 cites W2460657278 @default.
- W2938843971 cites W2560609797 @default.
- W2938843971 cites W2588946000 @default.
- W2938843971 cites W2775216572 @default.
- W2938843971 cites W2792912565 @default.
- W2938843971 cites W2891903896 @default.
- W2938843971 cites W2963121255 @default.
- W2938843971 cites W2963226018 @default.
- W2938843971 cites W2963281829 @default.
- W2938843971 cites W2963706542 @default.
- W2938843971 doi "https://doi.org/10.1109/kst.2019.8687813" @default.
- W2938843971 hasPublicationYear "2019" @default.
- W2938843971 type Work @default.
- W2938843971 sameAs 2938843971 @default.
- W2938843971 citedByCount "6" @default.
- W2938843971 countsByYear W29388439712019 @default.
- W2938843971 countsByYear W29388439712020 @default.
- W2938843971 countsByYear W29388439712021 @default.
- W2938843971 countsByYear W29388439712022 @default.
- W2938843971 crossrefType "proceedings-article" @default.
- W2938843971 hasAuthorship W2938843971A5005257913 @default.
- W2938843971 hasAuthorship W2938843971A5013863637 @default.
- W2938843971 hasAuthorship W2938843971A5023506216 @default.
- W2938843971 hasAuthorship W2938843971A5025006860 @default.
- W2938843971 hasConcept C108583219 @default.
- W2938843971 hasConcept C124504099 @default.
- W2938843971 hasConcept C131979681 @default.
- W2938843971 hasConcept C154945302 @default.
- W2938843971 hasConcept C2524010 @default.
- W2938843971 hasConcept C2778597888 @default.
- W2938843971 hasConcept C28719098 @default.
- W2938843971 hasConcept C31972630 @default.
- W2938843971 hasConcept C33923547 @default.
- W2938843971 hasConcept C36464697 @default.
- W2938843971 hasConcept C41008148 @default.
- W2938843971 hasConcept C82990744 @default.
- W2938843971 hasConcept C89600930 @default.
- W2938843971 hasConceptScore W2938843971C108583219 @default.
- W2938843971 hasConceptScore W2938843971C124504099 @default.
- W2938843971 hasConceptScore W2938843971C131979681 @default.
- W2938843971 hasConceptScore W2938843971C154945302 @default.
- W2938843971 hasConceptScore W2938843971C2524010 @default.
- W2938843971 hasConceptScore W2938843971C2778597888 @default.
- W2938843971 hasConceptScore W2938843971C28719098 @default.
- W2938843971 hasConceptScore W2938843971C31972630 @default.
- W2938843971 hasConceptScore W2938843971C33923547 @default.
- W2938843971 hasConceptScore W2938843971C36464697 @default.
- W2938843971 hasConceptScore W2938843971C41008148 @default.
- W2938843971 hasConceptScore W2938843971C82990744 @default.
- W2938843971 hasConceptScore W2938843971C89600930 @default.
- W2938843971 hasLocation W29388439711 @default.
- W2938843971 hasOpenAccess W2938843971 @default.
- W2938843971 hasPrimaryLocation W29388439711 @default.
- W2938843971 hasRelatedWork W1970741595 @default.
- W2938843971 hasRelatedWork W2125069987 @default.
- W2938843971 hasRelatedWork W2147631053 @default.
- W2938843971 hasRelatedWork W2413289629 @default.
- W2938843971 hasRelatedWork W2568271872 @default.
- W2938843971 hasRelatedWork W2608749441 @default.
- W2938843971 hasRelatedWork W2998983657 @default.
- W2938843971 hasRelatedWork W3191801980 @default.
- W2938843971 hasRelatedWork W3197341992 @default.
- W2938843971 hasRelatedWork W39150718 @default.
- W2938843971 isParatext "false" @default.
- W2938843971 isRetracted "false" @default.
- W2938843971 magId "2938843971" @default.
- W2938843971 workType "article" @default.