Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938853524> ?p ?o ?g. }
- W2938853524 endingPage "219" @default.
- W2938853524 startingPage "206" @default.
- W2938853524 abstract "We present a convolutional neural network- and long short-term memory-based method to classify the valence level of a computer user based on functional near infrared spectroscopy data. Convolutional neural networks are well suited for capturing the spatial characteristics of functional near infrared spectroscopy data. And long short-term memories are demonstrated to be good at learning temporal patterns of unknown length in time series data. We explore these methods in a combined layered architecture in order to improve classification accuracy. We conducted an experiment with 20 participants, wherein they were subjected to emotion inducing stimuli while their brain activity was measured using functional near infrared spectroscopy. Self-report surveys were administered after each stimulus to gauge participants' self-assessment of their valence. The resulting classification using these survey labels as ground truth provided a three-class classification accuracy 77.89% in across subject cross-validation. This method also shows promise for generalization to other classification tasks using functional near infrared spectroscopy data." @default.
- W2938853524 created "2019-04-25" @default.
- W2938853524 creator A5004337702 @default.
- W2938853524 creator A5009602263 @default.
- W2938853524 creator A5062905153 @default.
- W2938853524 date "2019-04-08" @default.
- W2938853524 modified "2023-10-08" @default.
- W2938853524 title "Classification of affect using deep learning on brain blood flow data" @default.
- W2938853524 cites W1952680005 @default.
- W2938853524 cites W1965832795 @default.
- W2938853524 cites W1980446678 @default.
- W2938853524 cites W1980786684 @default.
- W2938853524 cites W1986467382 @default.
- W2938853524 cites W1987006236 @default.
- W2938853524 cites W1987158088 @default.
- W2938853524 cites W1988876580 @default.
- W2938853524 cites W1999543972 @default.
- W2938853524 cites W2002055708 @default.
- W2938853524 cites W2013098353 @default.
- W2938853524 cites W2022761449 @default.
- W2938853524 cites W2025266605 @default.
- W2938853524 cites W2025919881 @default.
- W2938853524 cites W2037130083 @default.
- W2938853524 cites W2038896286 @default.
- W2938853524 cites W2039860386 @default.
- W2938853524 cites W2044362781 @default.
- W2938853524 cites W2054595133 @default.
- W2938853524 cites W2063435542 @default.
- W2938853524 cites W2064675550 @default.
- W2938853524 cites W2066064791 @default.
- W2938853524 cites W2066525901 @default.
- W2938853524 cites W2071608556 @default.
- W2938853524 cites W2072595322 @default.
- W2938853524 cites W2072735345 @default.
- W2938853524 cites W2075305541 @default.
- W2938853524 cites W2081420711 @default.
- W2938853524 cites W2083066861 @default.
- W2938853524 cites W2091084672 @default.
- W2938853524 cites W2092770659 @default.
- W2938853524 cites W2129248807 @default.
- W2938853524 cites W2130409243 @default.
- W2938853524 cites W2139848414 @default.
- W2938853524 cites W2145551398 @default.
- W2938853524 cites W2146828510 @default.
- W2938853524 cites W2149628368 @default.
- W2938853524 cites W2150590430 @default.
- W2938853524 cites W2155396513 @default.
- W2938853524 cites W2159006998 @default.
- W2938853524 cites W2162137602 @default.
- W2938853524 cites W2162605574 @default.
- W2938853524 cites W2164699598 @default.
- W2938853524 cites W2167298530 @default.
- W2938853524 cites W2168854316 @default.
- W2938853524 cites W2278113816 @default.
- W2938853524 cites W2541311184 @default.
- W2938853524 cites W2580887161 @default.
- W2938853524 cites W2610635404 @default.
- W2938853524 cites W2741907166 @default.
- W2938853524 cites W2755510477 @default.
- W2938853524 cites W2762173015 @default.
- W2938853524 cites W4206774691 @default.
- W2938853524 cites W4243310154 @default.
- W2938853524 cites W4244245439 @default.
- W2938853524 cites W4376595809 @default.
- W2938853524 cites W4376848438 @default.
- W2938853524 cites W3139562178 @default.
- W2938853524 doi "https://doi.org/10.1177/0967033519837986" @default.
- W2938853524 hasPublicationYear "2019" @default.
- W2938853524 type Work @default.
- W2938853524 sameAs 2938853524 @default.
- W2938853524 citedByCount "8" @default.
- W2938853524 countsByYear W29388535242020 @default.
- W2938853524 countsByYear W29388535242021 @default.
- W2938853524 countsByYear W29388535242022 @default.
- W2938853524 countsByYear W29388535242023 @default.
- W2938853524 crossrefType "journal-article" @default.
- W2938853524 hasAuthorship W2938853524A5004337702 @default.
- W2938853524 hasAuthorship W2938853524A5009602263 @default.
- W2938853524 hasAuthorship W2938853524A5062905153 @default.
- W2938853524 hasConcept C108583219 @default.
- W2938853524 hasConcept C121332964 @default.
- W2938853524 hasConcept C130796691 @default.
- W2938853524 hasConcept C146849305 @default.
- W2938853524 hasConcept C153180895 @default.
- W2938853524 hasConcept C154945302 @default.
- W2938853524 hasConcept C15744967 @default.
- W2938853524 hasConcept C168900304 @default.
- W2938853524 hasConcept C169760540 @default.
- W2938853524 hasConcept C169900460 @default.
- W2938853524 hasConcept C178790620 @default.
- W2938853524 hasConcept C185592680 @default.
- W2938853524 hasConcept C2781195155 @default.
- W2938853524 hasConcept C32891209 @default.
- W2938853524 hasConcept C41008148 @default.
- W2938853524 hasConcept C62520636 @default.
- W2938853524 hasConcept C81363708 @default.
- W2938853524 hasConceptScore W2938853524C108583219 @default.
- W2938853524 hasConceptScore W2938853524C121332964 @default.