Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938862655> ?p ?o ?g. }
- W2938862655 endingPage "51311" @default.
- W2938862655 startingPage "51295" @default.
- W2938862655 abstract "The ecological conditions in urban area are greatly changed during the process of industrialization and urbanization of China. The pressure-state-response (PSR) framework is the most popular method to evaluate the ecological quality by integrating a set of remote sensing and statistical indicators into one index through a weighting method. However, a completely remote-sensed ecological index (RSEI), integrating normalized difference vegetation index (NDVI), Wet, land surface temperature (LST), and the normalized differential build-up and bare soil index (NDBSI) through principal components analysis (PCA) method, has been proposed to assess the regional ecological quality. The publications about urban ecological evaluation by RSEI often focus on only one city or a certain area and there are few types of research on the ecological quality assessment by RSEI of 35 major cities in China. In this paper, we employed RSEI to monitor the changes in the ecological quality in China' 35 major cities. The results of RSEI were compared to that of PSR and stepwise regression method was applied to establish the quantitative relationship among RSEI, NDVI, Wet, NDBSI, and LST. The results show that there are 18 cities with ecological quality deteriorated, mainly located in the east and southwest of China (Shanghai, Guangzhou, Hongkong, Macao, Nanjing, Haikou, Shijiazhuang, and Xi'an), and 17 cities with better ecological quality, mainly located in the north and central area of China (Beijing, Tianjin, Shenzhen, Taipei, Fuzhou, Chongqing, and Jinan), from 1990 to 2015. The 3D-scatter plots of RSEI, NDVI, Wet, NDBSI, and LST demonstrate that the levels of very bad and bad mainly situate in where with a high density of built-up and low vegetation cover and soil water content. The PSR map, acquired from integrating 17 indicators, is quite similar to that of RSEI generated by merging only four remote-sensed indicators. This indicates that RSEI can be adopted to characterize regional ecological quality. Take the quantitative equation of Shanghai in 2015 as an example, every 1.46 decrement in NDBSI or each 3.72 increments in NDVI value can result in one increment in RSEI value and the ecological quality can be improved. Specifically, the expansion of the built-up area can lead to ecological degradation, and vegetation construction can promote eco-environmental quality." @default.
- W2938862655 created "2019-04-25" @default.
- W2938862655 creator A5006689242 @default.
- W2938862655 creator A5022630114 @default.
- W2938862655 creator A5057837748 @default.
- W2938862655 creator A5060002817 @default.
- W2938862655 date "2019-01-01" @default.
- W2938862655 modified "2023-10-11" @default.
- W2938862655 title "Eco-Environmental Quality Assessment in China’s 35 Major Cities Based On Remote Sensing Ecological Index" @default.
- W2938862655 cites W1963894054 @default.
- W2938862655 cites W1982030027 @default.
- W2938862655 cites W1990979605 @default.
- W2938862655 cites W1992050370 @default.
- W2938862655 cites W1996534964 @default.
- W2938862655 cites W2004934358 @default.
- W2938862655 cites W2004949263 @default.
- W2938862655 cites W2006273284 @default.
- W2938862655 cites W2029733275 @default.
- W2938862655 cites W2030267565 @default.
- W2938862655 cites W2031600437 @default.
- W2938862655 cites W2036658901 @default.
- W2938862655 cites W2043962305 @default.
- W2938862655 cites W2061253410 @default.
- W2938862655 cites W2065693747 @default.
- W2938862655 cites W2068371905 @default.
- W2938862655 cites W2068618591 @default.
- W2938862655 cites W2075300725 @default.
- W2938862655 cites W2077509829 @default.
- W2938862655 cites W2080964045 @default.
- W2938862655 cites W2086532849 @default.
- W2938862655 cites W2101678239 @default.
- W2938862655 cites W2153989276 @default.
- W2938862655 cites W2161241309 @default.
- W2938862655 cites W2161491521 @default.
- W2938862655 cites W2172120354 @default.
- W2938862655 cites W2264406234 @default.
- W2938862655 cites W2301398174 @default.
- W2938862655 cites W2311821421 @default.
- W2938862655 cites W2555687436 @default.
- W2938862655 cites W2561036903 @default.
- W2938862655 cites W2591763791 @default.
- W2938862655 cites W2757914566 @default.
- W2938862655 cites W2767279551 @default.
- W2938862655 cites W2769473490 @default.
- W2938862655 cites W2772529881 @default.
- W2938862655 cites W2790518257 @default.
- W2938862655 cites W2793327769 @default.
- W2938862655 cites W2794103215 @default.
- W2938862655 cites W2801697167 @default.
- W2938862655 cites W2802786249 @default.
- W2938862655 cites W2803000140 @default.
- W2938862655 cites W2806822627 @default.
- W2938862655 cites W2806982742 @default.
- W2938862655 cites W2808520328 @default.
- W2938862655 cites W2811511299 @default.
- W2938862655 cites W2883773897 @default.
- W2938862655 cites W2895475571 @default.
- W2938862655 cites W2896720583 @default.
- W2938862655 cites W2898607579 @default.
- W2938862655 cites W2901446071 @default.
- W2938862655 cites W2908071475 @default.
- W2938862655 cites W2916742295 @default.
- W2938862655 cites W31594708 @default.
- W2938862655 doi "https://doi.org/10.1109/access.2019.2911627" @default.
- W2938862655 hasPublicationYear "2019" @default.
- W2938862655 type Work @default.
- W2938862655 sameAs 2938862655 @default.
- W2938862655 citedByCount "94" @default.
- W2938862655 countsByYear W29388626552019 @default.
- W2938862655 countsByYear W29388626552020 @default.
- W2938862655 countsByYear W29388626552021 @default.
- W2938862655 countsByYear W29388626552022 @default.
- W2938862655 countsByYear W29388626552023 @default.
- W2938862655 crossrefType "journal-article" @default.
- W2938862655 hasAuthorship W2938862655A5006689242 @default.
- W2938862655 hasAuthorship W2938862655A5022630114 @default.
- W2938862655 hasAuthorship W2938862655A5057837748 @default.
- W2938862655 hasAuthorship W2938862655A5060002817 @default.
- W2938862655 hasBestOaLocation W29388626551 @default.
- W2938862655 hasConcept C100970517 @default.
- W2938862655 hasConcept C107826830 @default.
- W2938862655 hasConcept C111472728 @default.
- W2938862655 hasConcept C136764020 @default.
- W2938862655 hasConcept C138885662 @default.
- W2938862655 hasConcept C142724271 @default.
- W2938862655 hasConcept C1549246 @default.
- W2938862655 hasConcept C166957645 @default.
- W2938862655 hasConcept C18903297 @default.
- W2938862655 hasConcept C191935318 @default.
- W2938862655 hasConcept C205649164 @default.
- W2938862655 hasConcept C25989453 @default.
- W2938862655 hasConcept C2776133958 @default.
- W2938862655 hasConcept C2777382242 @default.
- W2938862655 hasConcept C2778304055 @default.
- W2938862655 hasConcept C2779530757 @default.
- W2938862655 hasConcept C39432304 @default.
- W2938862655 hasConcept C39853841 @default.
- W2938862655 hasConcept C41008148 @default.