Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938865570> ?p ?o ?g. }
- W2938865570 endingPage "592" @default.
- W2938865570 startingPage "583" @default.
- W2938865570 abstract "Multivariate methods have the potential to better capture complex relationships that may exist between different biological levels. Multiple Factor Analysis (MFA) is one of the most popular methods to obtain factor scores and measures of discrepancy between data sets. However, singular value decomposition in MFA is based on PCA, which is adequate only if the data is normally distributed, linear or stationary. In addition, including strongly correlated variables can overemphasize the contribution of the estimated components. In this work, we introduced a novel method referred as Independent Multifactorial Analysis (ICA-MFA) to derive relevant features from multiscale data. This method is an extended implementation of MFA, where the component value decomposition is based on Independent Component Analysis. In addition, ICA-MFA incorporates a predictive step based on an Independent Component Regression. We evaluated and compared the performance of ICA-MFA with both, the MFA method and traditional univariate analyses, in a simulation study. We showed how ICA-MFA explained up to 10-fold more variance than MFA and univariate methods. We applied the proposed algorithm in a study of 4057 individuals belonging to the population-based Rotterdam Study with available genetic and neuroimaging data, as well as information about executive cognitive functioning. Specifically, we used ICA-MFA to detect relevant genetic features related to structural brain regions, which in turn were involved, in the mechanisms of executive cognitive function. The proposed strategy makes it possible to determine the degree to which the whole set of genetic and/or neuroimaging markers contribute to the variability of the symptomatology jointly, rather than individually. While univariate results and MFA combinations only explained a limited proportion of variance (less than 2%), our method increased the explained variance (10%) and allowed the identification of significant components that maximize the variance explained in the model. The potential application of the ICA-MFA algorithm constitutes an important aspect of integrating multivariate multiscale data, specifically in the field of Neurogenetics." @default.
- W2938865570 created "2019-04-25" @default.
- W2938865570 creator A5000910889 @default.
- W2938865570 creator A5013665840 @default.
- W2938865570 creator A5017009749 @default.
- W2938865570 creator A5029373833 @default.
- W2938865570 creator A5038384386 @default.
- W2938865570 creator A5044129385 @default.
- W2938865570 creator A5046359435 @default.
- W2938865570 creator A5054662814 @default.
- W2938865570 creator A5056799255 @default.
- W2938865570 creator A5070564394 @default.
- W2938865570 creator A5082264596 @default.
- W2938865570 date "2019-03-22" @default.
- W2938865570 modified "2023-10-09" @default.
- W2938865570 title "Independent Multiple Factor Association Analysis for Multiblock Data in Imaging Genetics" @default.
- W2938865570 cites W1965480431 @default.
- W2938865570 cites W1973891477 @default.
- W2938865570 cites W1976137296 @default.
- W2938865570 cites W1980991473 @default.
- W2938865570 cites W1987653354 @default.
- W2938865570 cites W2019176983 @default.
- W2938865570 cites W2027662587 @default.
- W2938865570 cites W2058815839 @default.
- W2938865570 cites W2062371862 @default.
- W2938865570 cites W2065131965 @default.
- W2938865570 cites W2094013107 @default.
- W2938865570 cites W2099741732 @default.
- W2938865570 cites W2104739486 @default.
- W2938865570 cites W2121369614 @default.
- W2938865570 cites W2137225583 @default.
- W2938865570 cites W2142011448 @default.
- W2938865570 cites W2144043115 @default.
- W2938865570 cites W2144579914 @default.
- W2938865570 cites W2157910002 @default.
- W2938865570 cites W2163811629 @default.
- W2938865570 cites W2189810169 @default.
- W2938865570 cites W2196212278 @default.
- W2938865570 cites W2286261512 @default.
- W2938865570 cites W2294798173 @default.
- W2938865570 cites W2543481269 @default.
- W2938865570 cites W2560883530 @default.
- W2938865570 cites W2725171488 @default.
- W2938865570 cites W2766195635 @default.
- W2938865570 cites W2777005960 @default.
- W2938865570 cites W2802815532 @default.
- W2938865570 cites W2809983216 @default.
- W2938865570 doi "https://doi.org/10.1007/s12021-019-09416-z" @default.
- W2938865570 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30903541" @default.
- W2938865570 hasPublicationYear "2019" @default.
- W2938865570 type Work @default.
- W2938865570 sameAs 2938865570 @default.
- W2938865570 citedByCount "2" @default.
- W2938865570 countsByYear W29388655702021 @default.
- W2938865570 crossrefType "journal-article" @default.
- W2938865570 hasAuthorship W2938865570A5000910889 @default.
- W2938865570 hasAuthorship W2938865570A5013665840 @default.
- W2938865570 hasAuthorship W2938865570A5017009749 @default.
- W2938865570 hasAuthorship W2938865570A5029373833 @default.
- W2938865570 hasAuthorship W2938865570A5038384386 @default.
- W2938865570 hasAuthorship W2938865570A5044129385 @default.
- W2938865570 hasAuthorship W2938865570A5046359435 @default.
- W2938865570 hasAuthorship W2938865570A5054662814 @default.
- W2938865570 hasAuthorship W2938865570A5056799255 @default.
- W2938865570 hasAuthorship W2938865570A5070564394 @default.
- W2938865570 hasAuthorship W2938865570A5082264596 @default.
- W2938865570 hasBestOaLocation W29388655702 @default.
- W2938865570 hasConcept C118552586 @default.
- W2938865570 hasConcept C119857082 @default.
- W2938865570 hasConcept C124101348 @default.
- W2938865570 hasConcept C153180895 @default.
- W2938865570 hasConcept C154945302 @default.
- W2938865570 hasConcept C15744967 @default.
- W2938865570 hasConcept C161584116 @default.
- W2938865570 hasConcept C18183760 @default.
- W2938865570 hasConcept C199163554 @default.
- W2938865570 hasConcept C22789450 @default.
- W2938865570 hasConcept C27438332 @default.
- W2938865570 hasConcept C2780692498 @default.
- W2938865570 hasConcept C2908647359 @default.
- W2938865570 hasConcept C41008148 @default.
- W2938865570 hasConcept C51432778 @default.
- W2938865570 hasConcept C58693492 @default.
- W2938865570 hasConcept C71924100 @default.
- W2938865570 hasConcept C99454951 @default.
- W2938865570 hasConceptScore W2938865570C118552586 @default.
- W2938865570 hasConceptScore W2938865570C119857082 @default.
- W2938865570 hasConceptScore W2938865570C124101348 @default.
- W2938865570 hasConceptScore W2938865570C153180895 @default.
- W2938865570 hasConceptScore W2938865570C154945302 @default.
- W2938865570 hasConceptScore W2938865570C15744967 @default.
- W2938865570 hasConceptScore W2938865570C161584116 @default.
- W2938865570 hasConceptScore W2938865570C18183760 @default.
- W2938865570 hasConceptScore W2938865570C199163554 @default.
- W2938865570 hasConceptScore W2938865570C22789450 @default.
- W2938865570 hasConceptScore W2938865570C27438332 @default.
- W2938865570 hasConceptScore W2938865570C2780692498 @default.
- W2938865570 hasConceptScore W2938865570C2908647359 @default.