Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938960083> ?p ?o ?g. }
- W2938960083 endingPage "e0215238" @default.
- W2938960083 startingPage "e0215238" @default.
- W2938960083 abstract "There is currently much interest in developing general approaches for mapping forest aboveground carbon density using structural information contained in airborne LiDAR data. The most widely utilized model in tropical forests assumes that aboveground carbon density is a compound power function of top of canopy height (a metric easily derived from LiDAR), basal area and wood density. Here we derive the model in terms of the geometry of individual tree crowns within forest stands, showing how scaling exponents in the aboveground carbon density model arise from the height-diameter (H-D) and projected crown area-diameter (C-D) allometries of individual trees. We show that a power function relationship emerges when the C-D scaling exponent is close to 2, or when tree diameters follow a Weibull distribution (or other specific distributions) and are invariant across the landscape. In addition, basal area must be closely correlated with canopy height for the approach to work. The efficacy of the model was explored for a managed uneven-aged temperate forest in Ontario, Canada within which stands dominated by sugar maple (Acer saccharum Marsh.) and mixed stands were identified. A much poorer goodness-of-fit was obtained than previously reported for tropical forests (R2 = 0.29 vs. about 0.83). Explanations for the poor predictive power on the model include: (1) basal area was only weakly correlated with top canopy height; (2) tree size distributions varied considerably across the landscape; (3) the allometry exponents are affected by variation in species composition arising from timber management and soil conditions; and (4) the C-D allometric power function was far from 2 (1.28). We conclude that landscape heterogeneity in forest structure and tree allometry reduces the accuracy of general power-function models for predicting aboveground carbon density in managed forests. More studies in different forest types are needed to understand the situations in which power functions of LiDAR height are appropriate for modelling forest carbon stocks." @default.
- W2938960083 created "2019-04-25" @default.
- W2938960083 creator A5016333591 @default.
- W2938960083 creator A5023130995 @default.
- W2938960083 creator A5045205524 @default.
- W2938960083 creator A5046443626 @default.
- W2938960083 creator A5089619012 @default.
- W2938960083 date "2019-04-19" @default.
- W2938960083 modified "2023-09-27" @default.
- W2938960083 title "A critique of general allometry-inspired models for estimating forest carbon density from airborne LiDAR" @default.
- W2938960083 cites W1502583879 @default.
- W2938960083 cites W1516902267 @default.
- W2938960083 cites W1546824454 @default.
- W2938960083 cites W1967327628 @default.
- W2938960083 cites W1984000480 @default.
- W2938960083 cites W1995602130 @default.
- W2938960083 cites W2012632249 @default.
- W2938960083 cites W2018045766 @default.
- W2938960083 cites W2023353527 @default.
- W2938960083 cites W2028901390 @default.
- W2938960083 cites W2053808577 @default.
- W2938960083 cites W2090137677 @default.
- W2938960083 cites W2098935748 @default.
- W2938960083 cites W2107474547 @default.
- W2938960083 cites W2108008160 @default.
- W2938960083 cites W2109631166 @default.
- W2938960083 cites W2110221217 @default.
- W2938960083 cites W2112522511 @default.
- W2938960083 cites W2113521108 @default.
- W2938960083 cites W2118218146 @default.
- W2938960083 cites W2133613984 @default.
- W2938960083 cites W2136830425 @default.
- W2938960083 cites W2137183491 @default.
- W2938960083 cites W2137933418 @default.
- W2938960083 cites W2138465611 @default.
- W2938960083 cites W2155589521 @default.
- W2938960083 cites W2160608329 @default.
- W2938960083 cites W2165903616 @default.
- W2938960083 cites W2172063083 @default.
- W2938960083 cites W2212949369 @default.
- W2938960083 cites W2793100240 @default.
- W2938960083 cites W2883666593 @default.
- W2938960083 cites W809979079 @default.
- W2938960083 doi "https://doi.org/10.1371/journal.pone.0215238" @default.
- W2938960083 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6474603" @default.
- W2938960083 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31002682" @default.
- W2938960083 hasPublicationYear "2019" @default.
- W2938960083 type Work @default.
- W2938960083 sameAs 2938960083 @default.
- W2938960083 citedByCount "4" @default.
- W2938960083 countsByYear W29389600832020 @default.
- W2938960083 countsByYear W29389600832022 @default.
- W2938960083 countsByYear W29389600832023 @default.
- W2938960083 crossrefType "journal-article" @default.
- W2938960083 hasAuthorship W2938960083A5016333591 @default.
- W2938960083 hasAuthorship W2938960083A5023130995 @default.
- W2938960083 hasAuthorship W2938960083A5045205524 @default.
- W2938960083 hasAuthorship W2938960083A5046443626 @default.
- W2938960083 hasAuthorship W2938960083A5089619012 @default.
- W2938960083 hasBestOaLocation W29389600831 @default.
- W2938960083 hasConcept C100970517 @default.
- W2938960083 hasConcept C101000010 @default.
- W2938960083 hasConcept C105795698 @default.
- W2938960083 hasConcept C115540264 @default.
- W2938960083 hasConcept C121332964 @default.
- W2938960083 hasConcept C153026981 @default.
- W2938960083 hasConcept C173291955 @default.
- W2938960083 hasConcept C18903297 @default.
- W2938960083 hasConcept C205649164 @default.
- W2938960083 hasConcept C33923547 @default.
- W2938960083 hasConcept C34153902 @default.
- W2938960083 hasConcept C39432304 @default.
- W2938960083 hasConcept C42060753 @default.
- W2938960083 hasConcept C51399673 @default.
- W2938960083 hasConcept C62649853 @default.
- W2938960083 hasConcept C86803240 @default.
- W2938960083 hasConcept C91354502 @default.
- W2938960083 hasConcept C91586092 @default.
- W2938960083 hasConcept C97137747 @default.
- W2938960083 hasConceptScore W2938960083C100970517 @default.
- W2938960083 hasConceptScore W2938960083C101000010 @default.
- W2938960083 hasConceptScore W2938960083C105795698 @default.
- W2938960083 hasConceptScore W2938960083C115540264 @default.
- W2938960083 hasConceptScore W2938960083C121332964 @default.
- W2938960083 hasConceptScore W2938960083C153026981 @default.
- W2938960083 hasConceptScore W2938960083C173291955 @default.
- W2938960083 hasConceptScore W2938960083C18903297 @default.
- W2938960083 hasConceptScore W2938960083C205649164 @default.
- W2938960083 hasConceptScore W2938960083C33923547 @default.
- W2938960083 hasConceptScore W2938960083C34153902 @default.
- W2938960083 hasConceptScore W2938960083C39432304 @default.
- W2938960083 hasConceptScore W2938960083C42060753 @default.
- W2938960083 hasConceptScore W2938960083C51399673 @default.
- W2938960083 hasConceptScore W2938960083C62649853 @default.
- W2938960083 hasConceptScore W2938960083C86803240 @default.
- W2938960083 hasConceptScore W2938960083C91354502 @default.
- W2938960083 hasConceptScore W2938960083C91586092 @default.
- W2938960083 hasConceptScore W2938960083C97137747 @default.