Matches in SemOpenAlex for { <https://semopenalex.org/work/W2938977510> ?p ?o ?g. }
- W2938977510 endingPage "567" @default.
- W2938977510 startingPage "541" @default.
- W2938977510 abstract "Background Building tools to support personalized medicine needs to model medical decision-making. For this purpose, both expert and real world data provide a rich source of information. Currently, machine learning techniques are developing to select relevant variables for decision-making. Rather than using data-driven analysis alone, eliciting prior information from physicians related to their medical decision-making processes can be useful in variable selection. Our framework is electronic health records data on repeated dose adjustment of Irinotecan for the treatment of metastatic colorectal cancer. We propose a method that incorporates elicited expert weights associated with variables involved in dose reduction decisions into the Stochastic Search Variable Selection (SSVS), a Bayesian variable selection method, by using a power prior. Methods Clinician experts were first asked to provide numerical clinical relevance weights to express their beliefs about the importance of each variable in their medical decision making. Then, we modeled the link between repeated dose reduction, patient characteristics, and toxicities by assuming a logistic mixed-effects model. Simulated data were generated based on the elicited weights and combined with the observed dose reduction data via a power prior. We compared the Bayesian power prior-based SSVS performance to the usual SSVS in our case study, including a sensitivity analysis using the power prior parameter. Results The selected variables differ when using only expert knowledge, only the usual SSVS, or combining both. Our method enables one to select rare variables that may be missed using only the observed data and to discard variables that appear to be relevant based on the data but not relevant from the expert perspective. Conclusion We introduce an innovative Bayesian variable selection method that adaptively combines elicited expert information and real world data. The method selects a set of variables relevant to model medical decision process." @default.
- W2938977510 created "2019-04-25" @default.
- W2938977510 creator A5002347804 @default.
- W2938977510 creator A5003225431 @default.
- W2938977510 creator A5015193497 @default.
- W2938977510 creator A5033663279 @default.
- W2938977510 creator A5037397269 @default.
- W2938977510 creator A5048511315 @default.
- W2938977510 creator A5049363884 @default.
- W2938977510 creator A5065620187 @default.
- W2938977510 creator A5069676082 @default.
- W2938977510 creator A5070237613 @default.
- W2938977510 creator A5078070306 @default.
- W2938977510 date "2019-04-09" @default.
- W2938977510 modified "2023-10-09" @default.
- W2938977510 title "Integration of elicited expert information via a power prior in Bayesian variable selection: Application to colon cancer data" @default.
- W2938977510 cites W1540531200 @default.
- W2938977510 cites W1965760126 @default.
- W2938977510 cites W1999974018 @default.
- W2938977510 cites W2007069447 @default.
- W2938977510 cites W2012653948 @default.
- W2938977510 cites W2020946357 @default.
- W2938977510 cites W2024676114 @default.
- W2938977510 cites W2057331441 @default.
- W2938977510 cites W2063978378 @default.
- W2938977510 cites W2067235700 @default.
- W2938977510 cites W2073108936 @default.
- W2938977510 cites W2074682976 @default.
- W2938977510 cites W2110324196 @default.
- W2938977510 cites W2119862467 @default.
- W2938977510 cites W2122825543 @default.
- W2938977510 cites W2134836486 @default.
- W2938977510 cites W2136453526 @default.
- W2938977510 cites W2163278718 @default.
- W2938977510 cites W2339588574 @default.
- W2938977510 cites W2434847941 @default.
- W2938977510 cites W2512922897 @default.
- W2938977510 cites W2588543251 @default.
- W2938977510 cites W2771516752 @default.
- W2938977510 cites W2807930542 @default.
- W2938977510 cites W2893425640 @default.
- W2938977510 doi "https://doi.org/10.1177/0962280219841082" @default.
- W2938977510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30963815" @default.
- W2938977510 hasPublicationYear "2019" @default.
- W2938977510 type Work @default.
- W2938977510 sameAs 2938977510 @default.
- W2938977510 citedByCount "8" @default.
- W2938977510 countsByYear W29389775102019 @default.
- W2938977510 countsByYear W29389775102020 @default.
- W2938977510 countsByYear W29389775102021 @default.
- W2938977510 countsByYear W29389775102022 @default.
- W2938977510 countsByYear W29389775102023 @default.
- W2938977510 crossrefType "journal-article" @default.
- W2938977510 hasAuthorship W2938977510A5002347804 @default.
- W2938977510 hasAuthorship W2938977510A5003225431 @default.
- W2938977510 hasAuthorship W2938977510A5015193497 @default.
- W2938977510 hasAuthorship W2938977510A5033663279 @default.
- W2938977510 hasAuthorship W2938977510A5037397269 @default.
- W2938977510 hasAuthorship W2938977510A5048511315 @default.
- W2938977510 hasAuthorship W2938977510A5049363884 @default.
- W2938977510 hasAuthorship W2938977510A5065620187 @default.
- W2938977510 hasAuthorship W2938977510A5069676082 @default.
- W2938977510 hasAuthorship W2938977510A5070237613 @default.
- W2938977510 hasAuthorship W2938977510A5078070306 @default.
- W2938977510 hasBestOaLocation W29389775101 @default.
- W2938977510 hasConcept C107673813 @default.
- W2938977510 hasConcept C111335779 @default.
- W2938977510 hasConcept C119857082 @default.
- W2938977510 hasConcept C124101348 @default.
- W2938977510 hasConcept C134306372 @default.
- W2938977510 hasConcept C148483581 @default.
- W2938977510 hasConcept C151956035 @default.
- W2938977510 hasConcept C154945302 @default.
- W2938977510 hasConcept C182365436 @default.
- W2938977510 hasConcept C207201462 @default.
- W2938977510 hasConcept C2524010 @default.
- W2938977510 hasConcept C33724603 @default.
- W2938977510 hasConcept C33923547 @default.
- W2938977510 hasConcept C41008148 @default.
- W2938977510 hasConcept C81917197 @default.
- W2938977510 hasConceptScore W2938977510C107673813 @default.
- W2938977510 hasConceptScore W2938977510C111335779 @default.
- W2938977510 hasConceptScore W2938977510C119857082 @default.
- W2938977510 hasConceptScore W2938977510C124101348 @default.
- W2938977510 hasConceptScore W2938977510C134306372 @default.
- W2938977510 hasConceptScore W2938977510C148483581 @default.
- W2938977510 hasConceptScore W2938977510C151956035 @default.
- W2938977510 hasConceptScore W2938977510C154945302 @default.
- W2938977510 hasConceptScore W2938977510C182365436 @default.
- W2938977510 hasConceptScore W2938977510C207201462 @default.
- W2938977510 hasConceptScore W2938977510C2524010 @default.
- W2938977510 hasConceptScore W2938977510C33724603 @default.
- W2938977510 hasConceptScore W2938977510C33923547 @default.
- W2938977510 hasConceptScore W2938977510C41008148 @default.
- W2938977510 hasConceptScore W2938977510C81917197 @default.
- W2938977510 hasFunder F4320323807 @default.
- W2938977510 hasIssue "2" @default.
- W2938977510 hasLocation W29389775101 @default.