Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939067489> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2939067489 endingPage "24" @default.
- W2939067489 startingPage "14" @default.
- W2939067489 abstract "Cholesterol oxidase (COX) is widely used enzyme for total cholesterol estimation in human serum and for the fabrication of electro-chemical biosensors. COX is also used for the bioconversion of cholesterol; for the production of precursors of steroidal drugs and hormones. Enzyme activity depends decisively on defined conditions with respect to pH, temperature, ionic strength of the buffer, substrate concentration, enzyme concentration, reaction time. Standardization of these parameters is desirable to attain optimum activity of the enzyme. The present work aims to build a neural network model using five input parameters (pH, cholesterol concentration, 4-aminoantipyrine concentration, crude COX volume and horseradish peroxidase) and one output i.e., COX activity (U/ml) as a response. A feed forward back propagation neural network with Levenberg-Marquardt training algorithm was used to train the network. The network performance was assessed in terms of regression (R2), Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). A network topology of 5-10-1 was found to be optimum. The MSE, MAPE and R2 values of the neural model were 0.0075%, 0.12% and 0.9792% respectively. The maximum predicted activity of COX was 1.073 U/ml, which was close to the experimental value i.e., 1.1 U/ml at simulated optimum assay conditions. MSE and MAPE depicted the precision in the prediction efficiency of the developed ANN model. Higher R2 value showed a good correlation between the experimental and ANN predicted values. This proved the robustness of the ANN model to predict similar type of system (COX from other Streptomyces sp.) within the limits of the trained data set. The COX activity was enhanced by 1.71 folds after optimization of the reaction conditions." @default.
- W2939067489 created "2019-04-25" @default.
- W2939067489 creator A5040166548 @default.
- W2939067489 creator A5079387081 @default.
- W2939067489 creator A5085151542 @default.
- W2939067489 date "2019-01-01" @default.
- W2939067489 modified "2023-09-29" @default.
- W2939067489 title "Artificial Neural Network Modeling to Predict the Non-Linearity in Reaction Conditions of Cholesterol Oxidase from <i>Streptomyces olivaceus</i> <i>MTCC</i> 6820" @default.
- W2939067489 cites W1946263363 @default.
- W2939067489 cites W1965925393 @default.
- W2939067489 cites W1968881871 @default.
- W2939067489 cites W1978957493 @default.
- W2939067489 cites W1992951718 @default.
- W2939067489 cites W2019814461 @default.
- W2939067489 cites W2039588344 @default.
- W2939067489 cites W2043038709 @default.
- W2939067489 cites W2055443581 @default.
- W2939067489 cites W2058627660 @default.
- W2939067489 cites W2072042071 @default.
- W2939067489 cites W2085525100 @default.
- W2939067489 cites W2133595820 @default.
- W2939067489 cites W2154601923 @default.
- W2939067489 cites W2222895718 @default.
- W2939067489 cites W2298799964 @default.
- W2939067489 cites W2784253629 @default.
- W2939067489 cites W4255664210 @default.
- W2939067489 cites W4293247451 @default.
- W2939067489 doi "https://doi.org/10.4236/jbm.2019.74002" @default.
- W2939067489 hasPublicationYear "2019" @default.
- W2939067489 type Work @default.
- W2939067489 sameAs 2939067489 @default.
- W2939067489 citedByCount "3" @default.
- W2939067489 countsByYear W29390674892019 @default.
- W2939067489 countsByYear W29390674892022 @default.
- W2939067489 crossrefType "journal-article" @default.
- W2939067489 hasAuthorship W2939067489A5040166548 @default.
- W2939067489 hasAuthorship W2939067489A5079387081 @default.
- W2939067489 hasAuthorship W2939067489A5085151542 @default.
- W2939067489 hasBestOaLocation W29390674891 @default.
- W2939067489 hasConcept C105795698 @default.
- W2939067489 hasConcept C119857082 @default.
- W2939067489 hasConcept C139945424 @default.
- W2939067489 hasConcept C150217764 @default.
- W2939067489 hasConcept C185592680 @default.
- W2939067489 hasConcept C2778163477 @default.
- W2939067489 hasConcept C2779387492 @default.
- W2939067489 hasConcept C33923547 @default.
- W2939067489 hasConcept C41008148 @default.
- W2939067489 hasConcept C50644808 @default.
- W2939067489 hasConcept C55493867 @default.
- W2939067489 hasConceptScore W2939067489C105795698 @default.
- W2939067489 hasConceptScore W2939067489C119857082 @default.
- W2939067489 hasConceptScore W2939067489C139945424 @default.
- W2939067489 hasConceptScore W2939067489C150217764 @default.
- W2939067489 hasConceptScore W2939067489C185592680 @default.
- W2939067489 hasConceptScore W2939067489C2778163477 @default.
- W2939067489 hasConceptScore W2939067489C2779387492 @default.
- W2939067489 hasConceptScore W2939067489C33923547 @default.
- W2939067489 hasConceptScore W2939067489C41008148 @default.
- W2939067489 hasConceptScore W2939067489C50644808 @default.
- W2939067489 hasConceptScore W2939067489C55493867 @default.
- W2939067489 hasIssue "04" @default.
- W2939067489 hasLocation W29390674891 @default.
- W2939067489 hasOpenAccess W2939067489 @default.
- W2939067489 hasPrimaryLocation W29390674891 @default.
- W2939067489 hasRelatedWork W2594589062 @default.
- W2939067489 hasRelatedWork W2726592933 @default.
- W2939067489 hasRelatedWork W2778123278 @default.
- W2939067489 hasRelatedWork W2807954395 @default.
- W2939067489 hasRelatedWork W2942773263 @default.
- W2939067489 hasRelatedWork W3173604411 @default.
- W2939067489 hasRelatedWork W3216603269 @default.
- W2939067489 hasRelatedWork W4200265123 @default.
- W2939067489 hasRelatedWork W4213016846 @default.
- W2939067489 hasRelatedWork W4281693556 @default.
- W2939067489 hasVolume "07" @default.
- W2939067489 isParatext "false" @default.
- W2939067489 isRetracted "false" @default.
- W2939067489 magId "2939067489" @default.
- W2939067489 workType "article" @default.