Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939143027> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W2939143027 abstract "Owing to changing climatic conditions, crops often get affected, as a result of which agricultural yield decreases drastically. If the condition gets worse, crops may get vulnerable towards infections caused by fungal, bacterial, virus, etc. diseases causing agents. The method that can be adopted to prevent plant loss can be carried out by real-time identification of plant diseases. Our proposed model provides an automatic method to determine leaf disease in a plant using a trained dataset of pomegranate leaf images. The test set is used to check whether an image entered into the system contains disease or not. If not, it is considered to be healthy, otherwise the disease if that leaf is predicted and the prevention of plant disease is proposed automatically. Further, the rodent causing disease is also identified with image analysis performed on the image certified by biologists and scientists. This model provides an accuracy of the results generated using different cluster sizes, optimized experimentally, with image segmentation. Our model provides useful estimation and prediction of disease causing agent with necessary precautions." @default.
- W2939143027 created "2019-04-25" @default.
- W2939143027 creator A5002130285 @default.
- W2939143027 creator A5081910968 @default.
- W2939143027 creator A5086508780 @default.
- W2939143027 date "2018-12-01" @default.
- W2939143027 modified "2023-10-17" @default.
- W2939143027 title "Prediction Model for Automated Leaf Disease Detection & Analysis" @default.
- W2939143027 cites W1520829239 @default.
- W2939143027 cites W1597793043 @default.
- W2939143027 cites W1991424147 @default.
- W2939143027 cites W2786744169 @default.
- W2939143027 doi "https://doi.org/10.1109/iadcc.2018.8692116" @default.
- W2939143027 hasPublicationYear "2018" @default.
- W2939143027 type Work @default.
- W2939143027 sameAs 2939143027 @default.
- W2939143027 citedByCount "13" @default.
- W2939143027 countsByYear W29391430272019 @default.
- W2939143027 countsByYear W29391430272020 @default.
- W2939143027 countsByYear W29391430272021 @default.
- W2939143027 countsByYear W29391430272022 @default.
- W2939143027 countsByYear W29391430272023 @default.
- W2939143027 crossrefType "proceedings-article" @default.
- W2939143027 hasAuthorship W2939143027A5002130285 @default.
- W2939143027 hasAuthorship W2939143027A5081910968 @default.
- W2939143027 hasAuthorship W2939143027A5086508780 @default.
- W2939143027 hasConcept C126322002 @default.
- W2939143027 hasConcept C154945302 @default.
- W2939143027 hasConcept C2779134260 @default.
- W2939143027 hasConcept C41008148 @default.
- W2939143027 hasConcept C71924100 @default.
- W2939143027 hasConceptScore W2939143027C126322002 @default.
- W2939143027 hasConceptScore W2939143027C154945302 @default.
- W2939143027 hasConceptScore W2939143027C2779134260 @default.
- W2939143027 hasConceptScore W2939143027C41008148 @default.
- W2939143027 hasConceptScore W2939143027C71924100 @default.
- W2939143027 hasLocation W29391430271 @default.
- W2939143027 hasOpenAccess W2939143027 @default.
- W2939143027 hasPrimaryLocation W29391430271 @default.
- W2939143027 hasRelatedWork W2093578348 @default.
- W2939143027 hasRelatedWork W2350741829 @default.
- W2939143027 hasRelatedWork W2358668433 @default.
- W2939143027 hasRelatedWork W2376932109 @default.
- W2939143027 hasRelatedWork W2382290278 @default.
- W2939143027 hasRelatedWork W2390279801 @default.
- W2939143027 hasRelatedWork W2748952813 @default.
- W2939143027 hasRelatedWork W2766271392 @default.
- W2939143027 hasRelatedWork W2899084033 @default.
- W2939143027 hasRelatedWork W3107474891 @default.
- W2939143027 isParatext "false" @default.
- W2939143027 isRetracted "false" @default.
- W2939143027 magId "2939143027" @default.
- W2939143027 workType "article" @default.