Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939289673> ?p ?o ?g. }
- W2939289673 endingPage "199" @default.
- W2939289673 startingPage "199" @default.
- W2939289673 abstract "Current Earth Observation (EO) satellites provide excellent spatial, temporal and spectral coverage for passive measurements of atmospheric volcanic emissions. Of particular value for ash detection and quantification are the geostationary satellites that now carry multispectral imagers. These instruments have multiple spectral channels spanning the visible to infrared (IR) wavelengths and provide 1 × 1 km2 to 4 × 4 km2 resolution data every 5–15 min, continuously. For ash detection, two channels situated near 11 and 12 μ m are needed; for ash quantification a third or fourth channel also in the infrared is useful for constraining the height of the ash cloud. This work describes passive EO infrared measurements and techniques to determine volcanic cloud properties and includes examples using current methods with an emphasis on the main difficulties and ways to overcome them. A challenging aspect of using satellite data is to design algorithms that make use of the spectral, temporal (especially for geostationary sensors) and spatial information. The hyperspectral sensor AIRS is used to identify specific molecules from their spectral signatures (e.g., for SO2) and retrievals are demonstrated as global, regional and hemispheric maps of AIRS column SO2. This kind of information is not available on all sensors, but by combining temporal, spatial and broadband multi-spectral information from polar and geo sensors (e.g., MODIS and SEVIRI) useful insights can be made. For example, repeat coverage of a particular area using geostationary data can reveal temporal behaviour of broadband channels indicative of eruptive activity. In many instances, identifying the nature of a pixel (clear, cloud, ash etc.) is the major challenge. Sophisticated cloud detection schemes have been developed that utilise statistical measures, physical models and temporal variation to classify pixels. The state of the art on cloud detection is good, but improvements are always needed. An IR-based multispectral cloud identification scheme is described and some examples shown. The scheme is physically based but has deficiencies that can be improved during the daytime by including information from the visible channels. Physical retrieval schemes applied to ash detected pixels suffer from a lack of knowledge of some basic microphysical and optical parameters needed to run the retrieval models. In particular, there is a lack of accurate spectral refractive index information for ash particles. The size distribution of fine ash (1–63 μ m, diameter) is poorly constrained and more measurements are needed, particularly for ash that is airborne. Height measurements are also lacking and a satellite-based stereoscopic height retrieval is used to illustrate the value of this information for aviation. The importance of water in volcanic clouds is discussed here and the separation of ice-rich and ash-rich portions of volcanic clouds is analysed for the first time. More work is required in trying to identify ice-coated ash particles, and it is suggested that a class of ice-rich volcanic cloud be recognized and termed a ‘volcanic ice’ cloud. Such clouds are frequently observed in tropical eruptions of great vertical extent (e.g., 8 km or higher) and are often not identified correctly by traditional IR methods (e.g., reverse absorption). Finally, the global, hemispheric and regional sampling of EO satellites is demonstrated for a few eruptions where the ash and SO 2 dispersed over large distances (1000s km)." @default.
- W2939289673 created "2019-04-25" @default.
- W2939289673 creator A5046998055 @default.
- W2939289673 creator A5068276767 @default.
- W2939289673 date "2019-04-12" @default.
- W2939289673 modified "2023-10-18" @default.
- W2939289673 title "Passive Earth Observations of Volcanic Clouds in the Atmosphere" @default.
- W2939289673 cites W1496340422 @default.
- W2939289673 cites W1496996036 @default.
- W2939289673 cites W1517937119 @default.
- W2939289673 cites W1519329906 @default.
- W2939289673 cites W1601035560 @default.
- W2939289673 cites W1754725192 @default.
- W2939289673 cites W1830081507 @default.
- W2939289673 cites W1954979484 @default.
- W2939289673 cites W1972649457 @default.
- W2939289673 cites W1982051675 @default.
- W2939289673 cites W1982578362 @default.
- W2939289673 cites W1982846260 @default.
- W2939289673 cites W1983985307 @default.
- W2939289673 cites W1990414875 @default.
- W2939289673 cites W1992708791 @default.
- W2939289673 cites W1993523569 @default.
- W2939289673 cites W2001892132 @default.
- W2939289673 cites W2004421671 @default.
- W2939289673 cites W2004736225 @default.
- W2939289673 cites W2006073885 @default.
- W2939289673 cites W2008594480 @default.
- W2939289673 cites W2012295549 @default.
- W2939289673 cites W2014979773 @default.
- W2939289673 cites W2015306614 @default.
- W2939289673 cites W2021753259 @default.
- W2939289673 cites W2022330856 @default.
- W2939289673 cites W2025067880 @default.
- W2939289673 cites W2026088405 @default.
- W2939289673 cites W2026337749 @default.
- W2939289673 cites W2032879631 @default.
- W2939289673 cites W2034043545 @default.
- W2939289673 cites W2034857078 @default.
- W2939289673 cites W2038963893 @default.
- W2939289673 cites W2040543587 @default.
- W2939289673 cites W2049891650 @default.
- W2939289673 cites W2051042334 @default.
- W2939289673 cites W2051654927 @default.
- W2939289673 cites W2053870625 @default.
- W2939289673 cites W2055138256 @default.
- W2939289673 cites W2059072765 @default.
- W2939289673 cites W2063932149 @default.
- W2939289673 cites W2071693926 @default.
- W2939289673 cites W2074087563 @default.
- W2939289673 cites W2074556154 @default.
- W2939289673 cites W2074775292 @default.
- W2939289673 cites W2089813147 @default.
- W2939289673 cites W2095845372 @default.
- W2939289673 cites W2098417793 @default.
- W2939289673 cites W2100798472 @default.
- W2939289673 cites W2106981466 @default.
- W2939289673 cites W2119039617 @default.
- W2939289673 cites W2119461403 @default.
- W2939289673 cites W2121571008 @default.
- W2939289673 cites W2124289955 @default.
- W2939289673 cites W2127979934 @default.
- W2939289673 cites W2128648088 @default.
- W2939289673 cites W2138074350 @default.
- W2939289673 cites W2144160872 @default.
- W2939289673 cites W2146419431 @default.
- W2939289673 cites W2147443410 @default.
- W2939289673 cites W2159291134 @default.
- W2939289673 cites W2161669521 @default.
- W2939289673 cites W2163313249 @default.
- W2939289673 cites W2172486268 @default.
- W2939289673 cites W2174891874 @default.
- W2939289673 cites W2176546208 @default.
- W2939289673 cites W2279590956 @default.
- W2939289673 cites W2309305529 @default.
- W2939289673 cites W2346724103 @default.
- W2939289673 cites W2346959305 @default.
- W2939289673 cites W2551956064 @default.
- W2939289673 cites W2569771816 @default.
- W2939289673 cites W2584422654 @default.
- W2939289673 cites W2615380545 @default.
- W2939289673 cites W2755179215 @default.
- W2939289673 cites W2769263944 @default.
- W2939289673 cites W2795695788 @default.
- W2939289673 cites W2809347190 @default.
- W2939289673 cites W2896143760 @default.
- W2939289673 cites W2902070904 @default.
- W2939289673 cites W2915246713 @default.
- W2939289673 doi "https://doi.org/10.3390/atmos10040199" @default.
- W2939289673 hasPublicationYear "2019" @default.
- W2939289673 type Work @default.
- W2939289673 sameAs 2939289673 @default.
- W2939289673 citedByCount "16" @default.
- W2939289673 countsByYear W29392896732019 @default.
- W2939289673 countsByYear W29392896732020 @default.
- W2939289673 countsByYear W29392896732021 @default.
- W2939289673 countsByYear W29392896732022 @default.
- W2939289673 countsByYear W29392896732023 @default.