Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939367930> ?p ?o ?g. }
- W2939367930 endingPage "176" @default.
- W2939367930 startingPage "165" @default.
- W2939367930 abstract "Abstract Bankruptcy prediction is still important topic receiving notable attention. Information about an imminent bankruptcy threat is a crucial aspect of the decision-making process of managers, financial institutions, and government agencies. In this paper, we utilize a newly acquired dataset comprising financial parameters derived from the annual reports of small- and medium-sized companies. The data, which reveal the true ratio between bankrupt and non-bankrupt companies, are severely imbalanced and only contain a small fraction of bankrupt companies. Our solution to overcome this challenging scenario of imbalanced learning was to adopt three one-class classification methods: a least-squares approach to anomaly detection, an isolation forest, and one-class support vector machines for comparison with conventional support vector machines. We provide a comprehensive analysis of the financial attributes and identify those that are most relevant to bankruptcy prediction. The highest prediction performance in terms of the geometric mean score is 91%. The results are validated on two datasets from the manufacturing and construction industries." @default.
- W2939367930 created "2019-04-25" @default.
- W2939367930 creator A5034754893 @default.
- W2939367930 creator A5066332338 @default.
- W2939367930 creator A5075926177 @default.
- W2939367930 creator A5088144804 @default.
- W2939367930 date "2020-01-01" @default.
- W2939367930 modified "2023-09-29" @default.
- W2939367930 title "Bankruptcy prediction for small- and medium-sized companies using severely imbalanced datasets" @default.
- W2939367930 cites W1500895378 @default.
- W2939367930 cites W1539899368 @default.
- W2939367930 cites W1797640679 @default.
- W2939367930 cites W1938500889 @default.
- W2939367930 cites W1966745127 @default.
- W2939367930 cites W1974978265 @default.
- W2939367930 cites W1977117871 @default.
- W2939367930 cites W1993922907 @default.
- W2939367930 cites W1995443851 @default.
- W2939367930 cites W1997653576 @default.
- W2939367930 cites W2000070202 @default.
- W2939367930 cites W2000209534 @default.
- W2939367930 cites W2001412000 @default.
- W2939367930 cites W2007871702 @default.
- W2939367930 cites W2017988846 @default.
- W2939367930 cites W2020848494 @default.
- W2939367930 cites W2023299139 @default.
- W2939367930 cites W2025769637 @default.
- W2939367930 cites W2026501592 @default.
- W2939367930 cites W2029801487 @default.
- W2939367930 cites W2038894244 @default.
- W2939367930 cites W2041255922 @default.
- W2939367930 cites W2051046643 @default.
- W2939367930 cites W2052216493 @default.
- W2939367930 cites W2056132907 @default.
- W2939367930 cites W2062634819 @default.
- W2939367930 cites W2072768981 @default.
- W2939367930 cites W2082844214 @default.
- W2939367930 cites W2084353635 @default.
- W2939367930 cites W2084556438 @default.
- W2939367930 cites W2085988980 @default.
- W2939367930 cites W2086431959 @default.
- W2939367930 cites W2095148636 @default.
- W2939367930 cites W2098307847 @default.
- W2939367930 cites W2106100979 @default.
- W2939367930 cites W2115682519 @default.
- W2939367930 cites W2118978333 @default.
- W2939367930 cites W2121069620 @default.
- W2939367930 cites W2124532504 @default.
- W2939367930 cites W2132870739 @default.
- W2939367930 cites W2136219822 @default.
- W2939367930 cites W2138272657 @default.
- W2939367930 cites W2143426320 @default.
- W2939367930 cites W2154137289 @default.
- W2939367930 cites W2161920802 @default.
- W2939367930 cites W2206299551 @default.
- W2939367930 cites W2307376191 @default.
- W2939367930 cites W2338318698 @default.
- W2939367930 cites W2342352000 @default.
- W2939367930 cites W2344681634 @default.
- W2939367930 cites W2355793440 @default.
- W2939367930 cites W2503700686 @default.
- W2939367930 cites W2562319768 @default.
- W2939367930 cites W2615743202 @default.
- W2939367930 cites W2760451156 @default.
- W2939367930 cites W2761075141 @default.
- W2939367930 cites W2766659517 @default.
- W2939367930 cites W2792998389 @default.
- W2939367930 cites W2796013264 @default.
- W2939367930 cites W2810154616 @default.
- W2939367930 cites W3121566545 @default.
- W2939367930 cites W3125293776 @default.
- W2939367930 doi "https://doi.org/10.1016/j.econmod.2019.04.003" @default.
- W2939367930 hasPublicationYear "2020" @default.
- W2939367930 type Work @default.
- W2939367930 sameAs 2939367930 @default.
- W2939367930 citedByCount "41" @default.
- W2939367930 countsByYear W29393679302019 @default.
- W2939367930 countsByYear W29393679302020 @default.
- W2939367930 countsByYear W29393679302021 @default.
- W2939367930 countsByYear W29393679302022 @default.
- W2939367930 countsByYear W29393679302023 @default.
- W2939367930 crossrefType "journal-article" @default.
- W2939367930 hasAuthorship W2939367930A5034754893 @default.
- W2939367930 hasAuthorship W2939367930A5066332338 @default.
- W2939367930 hasAuthorship W2939367930A5075926177 @default.
- W2939367930 hasAuthorship W2939367930A5088144804 @default.
- W2939367930 hasConcept C10138342 @default.
- W2939367930 hasConcept C149782125 @default.
- W2939367930 hasConcept C162324750 @default.
- W2939367930 hasConcept C2777388754 @default.
- W2939367930 hasConcept C504631918 @default.
- W2939367930 hasConceptScore W2939367930C10138342 @default.
- W2939367930 hasConceptScore W2939367930C149782125 @default.
- W2939367930 hasConceptScore W2939367930C162324750 @default.
- W2939367930 hasConceptScore W2939367930C2777388754 @default.
- W2939367930 hasConceptScore W2939367930C504631918 @default.
- W2939367930 hasFunder F4320323251 @default.
- W2939367930 hasLocation W29393679301 @default.