Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939497660> ?p ?o ?g. }
- W2939497660 abstract "Data association-based multiple object tracking (MOT) involves multiple separated modules processed or optimized differently, which results in complex method design and requires non-trivial tuning of parameters. In this paper, we present an end-to-end model, named FAMNet, where Feature extraction, Affinity estimation and Multi-dimensional assignment are refined in a single network. All layers in FAMNet are designed differentiable thus can be optimized jointly to learn the discriminative features and higher-order affinity model for robust MOT, which is supervised by the loss directly from the assignment ground truth. We also integrate single object tracking technique and a dedicated target management scheme into the FAMNet-based tracking system to further recover false negatives and inhibit noisy target candidates generated by the external detector. The proposed method is evaluated on a diverse set of benchmarks including MOT2015, MOT2017, KITTI-Car and UA-DETRAC, and achieves promising performance on all of them in comparison with state-of-the-arts." @default.
- W2939497660 created "2019-04-25" @default.
- W2939497660 creator A5061469520 @default.
- W2939497660 creator A5087101031 @default.
- W2939497660 date "2019-04-09" @default.
- W2939497660 modified "2023-10-16" @default.
- W2939497660 title "FAMNet: Joint Learning of Feature, Affinity and Multi-dimensional Assignment for Online Multiple Object Tracking" @default.
- W2939497660 cites W1475617732 @default.
- W2939497660 cites W1521019969 @default.
- W2939497660 cites W1528063097 @default.
- W2939497660 cites W1531192956 @default.
- W2939497660 cites W1576709274 @default.
- W2939497660 cites W1863704471 @default.
- W2939497660 cites W1921895346 @default.
- W2939497660 cites W2022515186 @default.
- W2939497660 cites W2083049794 @default.
- W2939497660 cites W2110226160 @default.
- W2939497660 cites W2111644456 @default.
- W2939497660 cites W2115734113 @default.
- W2939497660 cites W2122469558 @default.
- W2939497660 cites W2124781496 @default.
- W2939497660 cites W2125556102 @default.
- W2939497660 cites W2130258433 @default.
- W2939497660 cites W2150066425 @default.
- W2939497660 cites W2163937424 @default.
- W2939497660 cites W2168356304 @default.
- W2939497660 cites W2225887246 @default.
- W2939497660 cites W2237765446 @default.
- W2939497660 cites W2291627510 @default.
- W2939497660 cites W2339473870 @default.
- W2939497660 cites W2343841668 @default.
- W2939497660 cites W2468912036 @default.
- W2939497660 cites W2474389331 @default.
- W2939497660 cites W2520234541 @default.
- W2939497660 cites W2521457681 @default.
- W2939497660 cites W2555375762 @default.
- W2939497660 cites W2604679602 @default.
- W2939497660 cites W2613718673 @default.
- W2939497660 cites W2739013603 @default.
- W2939497660 cites W2739374836 @default.
- W2939497660 cites W2739491435 @default.
- W2939497660 cites W2749203358 @default.
- W2939497660 cites W2765741142 @default.
- W2939497660 cites W2766984662 @default.
- W2939497660 cites W2791873344 @default.
- W2939497660 cites W2799132636 @default.
- W2939497660 cites W2805447362 @default.
- W2939497660 cites W2895071559 @default.
- W2939497660 cites W2895150009 @default.
- W2939497660 cites W2897582990 @default.
- W2939497660 cites W2901925479 @default.
- W2939497660 cites W2951063106 @default.
- W2939497660 cites W2963063317 @default.
- W2939497660 cites W2963121817 @default.
- W2939497660 cites W2963150697 @default.
- W2939497660 cites W2963481014 @default.
- W2939497660 cites W2964015640 @default.
- W2939497660 cites W2964019074 @default.
- W2939497660 cites W3099887740 @default.
- W2939497660 cites W421393966 @default.
- W2939497660 doi "https://doi.org/10.48550/arxiv.1904.04989" @default.
- W2939497660 hasPublicationYear "2019" @default.
- W2939497660 type Work @default.
- W2939497660 sameAs 2939497660 @default.
- W2939497660 citedByCount "6" @default.
- W2939497660 countsByYear W29394976602020 @default.
- W2939497660 countsByYear W29394976602021 @default.
- W2939497660 crossrefType "posted-content" @default.
- W2939497660 hasAuthorship W2939497660A5061469520 @default.
- W2939497660 hasAuthorship W2939497660A5087101031 @default.
- W2939497660 hasBestOaLocation W29394976601 @default.
- W2939497660 hasConcept C124101348 @default.
- W2939497660 hasConcept C138885662 @default.
- W2939497660 hasConcept C146849305 @default.
- W2939497660 hasConcept C153180895 @default.
- W2939497660 hasConcept C154945302 @default.
- W2939497660 hasConcept C15744967 @default.
- W2939497660 hasConcept C177264268 @default.
- W2939497660 hasConcept C19417346 @default.
- W2939497660 hasConcept C199360897 @default.
- W2939497660 hasConcept C202474056 @default.
- W2939497660 hasConcept C2775936607 @default.
- W2939497660 hasConcept C2776151529 @default.
- W2939497660 hasConcept C2776401178 @default.
- W2939497660 hasConcept C2781238097 @default.
- W2939497660 hasConcept C31972630 @default.
- W2939497660 hasConcept C41008148 @default.
- W2939497660 hasConcept C41895202 @default.
- W2939497660 hasConcept C52622490 @default.
- W2939497660 hasConcept C76155785 @default.
- W2939497660 hasConcept C94915269 @default.
- W2939497660 hasConcept C97931131 @default.
- W2939497660 hasConceptScore W2939497660C124101348 @default.
- W2939497660 hasConceptScore W2939497660C138885662 @default.
- W2939497660 hasConceptScore W2939497660C146849305 @default.
- W2939497660 hasConceptScore W2939497660C153180895 @default.
- W2939497660 hasConceptScore W2939497660C154945302 @default.
- W2939497660 hasConceptScore W2939497660C15744967 @default.
- W2939497660 hasConceptScore W2939497660C177264268 @default.
- W2939497660 hasConceptScore W2939497660C19417346 @default.