Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939570633> ?p ?o ?g. }
- W2939570633 endingPage "6564" @default.
- W2939570633 startingPage "6552" @default.
- W2939570633 abstract "Spatiotemporal image fusion is considered as a promising way to provide Earth observations with both high spatial resolution and frequent coverage, and recently, learning-based solutions have been receiving broad attention. However, these algorithms treating spatiotemporal fusion as a single image super-resolution problem, generally suffers from the significant spatial information loss in coarse images, due to the large upscaling factors in real applications. To address this issue, in this paper, we exploit temporal information in fine image sequences and solve the spatiotemporal fusion problem with a two-stream convolutional neural network called StfNet . The novelty of this paper is twofold. First, considering the temporal dependence among image sequences, we incorporate the fine image acquired at the neighboring date to super-resolve the coarse image at the prediction date. In this way, our network predicts a fine image not only from the structural similarity between coarse and fine image pairs but also by exploiting abundant texture information in the available neighboring fine images. Second, instead of estimating each output fine image independently, we consider the temporal relations among time-series images and formulate a temporal constraint. This temporal constraint aiming to guarantee the uniqueness of the fusion result and encourages temporal consistent predictions in learning and thus leads to more realistic final results. We evaluate the performance of the StfNet using two actual data sets of Landsat-Moderate Resolution Imaging Spectroradiometer (MODIS) acquisitions, and both visual and quantitative evaluations demonstrate that our algorithm achieves state-of-the-art performance." @default.
- W2939570633 created "2019-04-25" @default.
- W2939570633 creator A5035508615 @default.
- W2939570633 creator A5039339597 @default.
- W2939570633 creator A5051880364 @default.
- W2939570633 creator A5075013625 @default.
- W2939570633 creator A5079668307 @default.
- W2939570633 date "2019-09-01" @default.
- W2939570633 modified "2023-10-11" @default.
- W2939570633 title "<i>StfNet</i>: A Two-Stream Convolutional Neural Network for Spatiotemporal Image Fusion" @default.
- W2939570633 cites W1588434184 @default.
- W2939570633 cites W1840202565 @default.
- W2939570633 cites W1965825034 @default.
- W2939570633 cites W1982956952 @default.
- W2939570633 cites W1987337512 @default.
- W2939570633 cites W2003224325 @default.
- W2939570633 cites W2013140666 @default.
- W2939570633 cites W2015345826 @default.
- W2939570633 cites W2023015896 @default.
- W2939570633 cites W2031596845 @default.
- W2939570633 cites W2050225888 @default.
- W2939570633 cites W2050565140 @default.
- W2939570633 cites W2051372842 @default.
- W2939570633 cites W2055007440 @default.
- W2939570633 cites W2056811372 @default.
- W2939570633 cites W2061929982 @default.
- W2939570633 cites W2088254198 @default.
- W2939570633 cites W2088603520 @default.
- W2939570633 cites W2093033924 @default.
- W2939570633 cites W2101051003 @default.
- W2939570633 cites W2119513445 @default.
- W2939570633 cites W2121058967 @default.
- W2939570633 cites W2151456308 @default.
- W2939570633 cites W2200350976 @default.
- W2939570633 cites W2295859130 @default.
- W2939570633 cites W2518815253 @default.
- W2939570633 cites W2547535712 @default.
- W2939570633 cites W2554764988 @default.
- W2939570633 cites W2615981376 @default.
- W2939570633 cites W2757399931 @default.
- W2939570633 cites W2762381996 @default.
- W2939570633 cites W2773771410 @default.
- W2939570633 cites W2783165089 @default.
- W2939570633 cites W2783231089 @default.
- W2939570633 cites W2793445582 @default.
- W2939570633 cites W2795018073 @default.
- W2939570633 cites W2902746003 @default.
- W2939570633 cites W2964140612 @default.
- W2939570633 cites W3101012758 @default.
- W2939570633 cites W54257720 @default.
- W2939570633 doi "https://doi.org/10.1109/tgrs.2019.2907310" @default.
- W2939570633 hasPublicationYear "2019" @default.
- W2939570633 type Work @default.
- W2939570633 sameAs 2939570633 @default.
- W2939570633 citedByCount "107" @default.
- W2939570633 countsByYear W29395706332019 @default.
- W2939570633 countsByYear W29395706332020 @default.
- W2939570633 countsByYear W29395706332021 @default.
- W2939570633 countsByYear W29395706332022 @default.
- W2939570633 countsByYear W29395706332023 @default.
- W2939570633 crossrefType "journal-article" @default.
- W2939570633 hasAuthorship W2939570633A5035508615 @default.
- W2939570633 hasAuthorship W2939570633A5039339597 @default.
- W2939570633 hasAuthorship W2939570633A5051880364 @default.
- W2939570633 hasAuthorship W2939570633A5075013625 @default.
- W2939570633 hasAuthorship W2939570633A5079668307 @default.
- W2939570633 hasBestOaLocation W29395706334 @default.
- W2939570633 hasConcept C115961682 @default.
- W2939570633 hasConcept C127313418 @default.
- W2939570633 hasConcept C138885662 @default.
- W2939570633 hasConcept C153180895 @default.
- W2939570633 hasConcept C154945302 @default.
- W2939570633 hasConcept C158525013 @default.
- W2939570633 hasConcept C31972630 @default.
- W2939570633 hasConcept C41008148 @default.
- W2939570633 hasConcept C41895202 @default.
- W2939570633 hasConcept C62649853 @default.
- W2939570633 hasConcept C69744172 @default.
- W2939570633 hasConcept C81363708 @default.
- W2939570633 hasConceptScore W2939570633C115961682 @default.
- W2939570633 hasConceptScore W2939570633C127313418 @default.
- W2939570633 hasConceptScore W2939570633C138885662 @default.
- W2939570633 hasConceptScore W2939570633C153180895 @default.
- W2939570633 hasConceptScore W2939570633C154945302 @default.
- W2939570633 hasConceptScore W2939570633C158525013 @default.
- W2939570633 hasConceptScore W2939570633C31972630 @default.
- W2939570633 hasConceptScore W2939570633C41008148 @default.
- W2939570633 hasConceptScore W2939570633C41895202 @default.
- W2939570633 hasConceptScore W2939570633C62649853 @default.
- W2939570633 hasConceptScore W2939570633C69744172 @default.
- W2939570633 hasConceptScore W2939570633C81363708 @default.
- W2939570633 hasFunder F4320321001 @default.
- W2939570633 hasIssue "9" @default.
- W2939570633 hasLocation W29395706331 @default.
- W2939570633 hasLocation W29395706332 @default.
- W2939570633 hasLocation W29395706333 @default.
- W2939570633 hasLocation W29395706334 @default.
- W2939570633 hasOpenAccess W2939570633 @default.