Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939582117> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2939582117 abstract "Non-homogeneous dynamic Bayesian network models (NH-DBNs) have become popular statistical tools for analyzing time series data in order to infer the relationships between units from the data. We consider those models where a set of changepoints is employed to divide the data into disjoint segments. The changepoints are time points in which after them the general trend of the data changes. Thereafter, data within each segment are modeled with linear regression model. Some segments might be rather short and including only a few data points. Statistical inference in short segments with just a few (insufficient) data may lead to wrong conclusions. This, indeed, calls for models which make use of information sharing among segments. Recently, models with different coupling mechanisms between segments have been introduced. The main shortcoming of these models are that they cannot deal with time series data in which some parameters are dissimilar (uncoupled) over segments. Another scenario also happens when we encounter some time series data which have been measured under different experimental conditions. In this case we can assume each dataset per se a separate segment. Not rarely only some parameters depend on the condition while the other parameters stay constant across conditions. These situations call for advanced models with an effective mechanisms for coupling and uncoupling simultaneously. In this thesis we introduced four novel models which can deal with the above-mentioned situations and our empirical results have shown that our models lead to improved network reconstruction accuracies and outperform all competing models." @default.
- W2939582117 created "2019-04-25" @default.
- W2939582117 creator A5080571228 @default.
- W2939582117 date "2019-01-01" @default.
- W2939582117 modified "2023-09-25" @default.
- W2939582117 title "Advanced non-homogeneous dynamic Bayesian network models for statistical analyses of time series data" @default.
- W2939582117 hasPublicationYear "2019" @default.
- W2939582117 type Work @default.
- W2939582117 sameAs 2939582117 @default.
- W2939582117 citedByCount "0" @default.
- W2939582117 crossrefType "journal-article" @default.
- W2939582117 hasAuthorship W2939582117A5080571228 @default.
- W2939582117 hasConcept C105795698 @default.
- W2939582117 hasConcept C107673813 @default.
- W2939582117 hasConcept C114289077 @default.
- W2939582117 hasConcept C114614502 @default.
- W2939582117 hasConcept C119857082 @default.
- W2939582117 hasConcept C124101348 @default.
- W2939582117 hasConcept C134261354 @default.
- W2939582117 hasConcept C143724316 @default.
- W2939582117 hasConcept C151406439 @default.
- W2939582117 hasConcept C151730666 @default.
- W2939582117 hasConcept C154945302 @default.
- W2939582117 hasConcept C177264268 @default.
- W2939582117 hasConcept C199360897 @default.
- W2939582117 hasConcept C2776214188 @default.
- W2939582117 hasConcept C33923547 @default.
- W2939582117 hasConcept C41008148 @default.
- W2939582117 hasConcept C45340560 @default.
- W2939582117 hasConcept C58489278 @default.
- W2939582117 hasConcept C86803240 @default.
- W2939582117 hasConceptScore W2939582117C105795698 @default.
- W2939582117 hasConceptScore W2939582117C107673813 @default.
- W2939582117 hasConceptScore W2939582117C114289077 @default.
- W2939582117 hasConceptScore W2939582117C114614502 @default.
- W2939582117 hasConceptScore W2939582117C119857082 @default.
- W2939582117 hasConceptScore W2939582117C124101348 @default.
- W2939582117 hasConceptScore W2939582117C134261354 @default.
- W2939582117 hasConceptScore W2939582117C143724316 @default.
- W2939582117 hasConceptScore W2939582117C151406439 @default.
- W2939582117 hasConceptScore W2939582117C151730666 @default.
- W2939582117 hasConceptScore W2939582117C154945302 @default.
- W2939582117 hasConceptScore W2939582117C177264268 @default.
- W2939582117 hasConceptScore W2939582117C199360897 @default.
- W2939582117 hasConceptScore W2939582117C2776214188 @default.
- W2939582117 hasConceptScore W2939582117C33923547 @default.
- W2939582117 hasConceptScore W2939582117C41008148 @default.
- W2939582117 hasConceptScore W2939582117C45340560 @default.
- W2939582117 hasConceptScore W2939582117C58489278 @default.
- W2939582117 hasConceptScore W2939582117C86803240 @default.
- W2939582117 hasLocation W29395821171 @default.
- W2939582117 hasOpenAccess W2939582117 @default.
- W2939582117 hasPrimaryLocation W29395821171 @default.
- W2939582117 hasRelatedWork W145997421 @default.
- W2939582117 hasRelatedWork W2090715958 @default.
- W2939582117 hasRelatedWork W2242987792 @default.
- W2939582117 hasRelatedWork W2345946412 @default.
- W2939582117 hasRelatedWork W2414370009 @default.
- W2939582117 hasRelatedWork W2515740989 @default.
- W2939582117 hasRelatedWork W2549187507 @default.
- W2939582117 hasRelatedWork W2755279011 @default.
- W2939582117 hasRelatedWork W2781914965 @default.
- W2939582117 hasRelatedWork W2792276547 @default.
- W2939582117 hasRelatedWork W2792786159 @default.
- W2939582117 hasRelatedWork W2912390055 @default.
- W2939582117 hasRelatedWork W2914244351 @default.
- W2939582117 hasRelatedWork W2948707474 @default.
- W2939582117 hasRelatedWork W2950368377 @default.
- W2939582117 hasRelatedWork W3038344117 @default.
- W2939582117 hasRelatedWork W3109648049 @default.
- W2939582117 hasRelatedWork W3122207609 @default.
- W2939582117 hasRelatedWork W3125843301 @default.
- W2939582117 hasRelatedWork W3211870724 @default.
- W2939582117 isParatext "false" @default.
- W2939582117 isRetracted "false" @default.
- W2939582117 magId "2939582117" @default.
- W2939582117 workType "article" @default.