Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939644740> ?p ?o ?g. }
- W2939644740 endingPage "87" @default.
- W2939644740 startingPage "74" @default.
- W2939644740 abstract "Self-locking origami structures are characterized by their piecewise linear constitutive relations between force and deformation, which, in practice, are always completely opaque and unmeasurable: the number of piecewise segments, the positions of non-smooth points, and the linear parameters of each segment are unknown a priori. However, acquiring this information is of fundamental importance for understanding the origami structure's dynamic folding process and predicting its dynamic behaviors. This, therefore, arouses our interest in adopting a dynamical identification process to determine the model and to estimate the parameters. In this research, based on the piecewise linear assumption, a physically-interpretable neural-fuzzy network is built to correlate the measured input and output data. Unlike the conventional approaches, the constructed neural network possesses specific physical meaning of its components: the number of neurons relates to the number of piecewise segments, the coefficients of the local linear models relate to the parameters of the constitutive relations, and the validity functions relate to the positions of non-smooth points. By addressing several examples with different backgrounds, the network's underlying data training methods are illustrated, including the local linear optimization for linear parameters, nested optimization for nonlinear partitions, and Local Linear Model Tree optimization for model selection. Noting that the tackled origami problem holds strong universality in terms of the unknown piecewise characteristics, the proposed approach would thus provide an effective, generic, and physically significant means for handling piecewise linear dynamical systems and meanwhile bring fresh vitality to the artificial neural network research." @default.
- W2939644740 created "2019-04-25" @default.
- W2939644740 creator A5013928795 @default.
- W2939644740 creator A5036528581 @default.
- W2939644740 creator A5070490171 @default.
- W2939644740 date "2019-08-01" @default.
- W2939644740 modified "2023-09-27" @default.
- W2939644740 title "Identification of piecewise linear dynamical systems using physically-interpretable neural-fuzzy networks: Methods and applications to origami structures" @default.
- W2939644740 cites W1521764569 @default.
- W2939644740 cites W1857560888 @default.
- W2939644740 cites W1973683233 @default.
- W2939644740 cites W1974793347 @default.
- W2939644740 cites W1977273226 @default.
- W2939644740 cites W1981039744 @default.
- W2939644740 cites W1981535500 @default.
- W2939644740 cites W1982237802 @default.
- W2939644740 cites W1987596686 @default.
- W2939644740 cites W1990034511 @default.
- W2939644740 cites W1990381576 @default.
- W2939644740 cites W1991162950 @default.
- W2939644740 cites W1994540347 @default.
- W2939644740 cites W1999084173 @default.
- W2939644740 cites W2006055599 @default.
- W2939644740 cites W2007024513 @default.
- W2939644740 cites W2007093507 @default.
- W2939644740 cites W2019821804 @default.
- W2939644740 cites W2021929616 @default.
- W2939644740 cites W2023412496 @default.
- W2939644740 cites W2049910381 @default.
- W2939644740 cites W2054026561 @default.
- W2939644740 cites W2055358056 @default.
- W2939644740 cites W2059050978 @default.
- W2939644740 cites W2069191153 @default.
- W2939644740 cites W2076179442 @default.
- W2939644740 cites W2092587625 @default.
- W2939644740 cites W2094570382 @default.
- W2939644740 cites W2096103148 @default.
- W2939644740 cites W2101352054 @default.
- W2939644740 cites W2113996820 @default.
- W2939644740 cites W2128235725 @default.
- W2939644740 cites W2128850857 @default.
- W2939644740 cites W2152366492 @default.
- W2939644740 cites W2159271985 @default.
- W2939644740 cites W2166588043 @default.
- W2939644740 cites W2167127368 @default.
- W2939644740 cites W2168069209 @default.
- W2939644740 cites W2171391435 @default.
- W2939644740 cites W2269329719 @default.
- W2939644740 cites W2270379410 @default.
- W2939644740 cites W2273125903 @default.
- W2939644740 cites W2342078803 @default.
- W2939644740 cites W2343512282 @default.
- W2939644740 cites W2410305050 @default.
- W2939644740 cites W2411292903 @default.
- W2939644740 cites W2534879269 @default.
- W2939644740 cites W2551575772 @default.
- W2939644740 cites W2735263910 @default.
- W2939644740 cites W2737052725 @default.
- W2939644740 cites W2739748226 @default.
- W2939644740 cites W2743374112 @default.
- W2939644740 cites W2769115058 @default.
- W2939644740 cites W2790236242 @default.
- W2939644740 cites W2790604742 @default.
- W2939644740 cites W2790929767 @default.
- W2939644740 cites W2794332309 @default.
- W2939644740 cites W2902164547 @default.
- W2939644740 cites W2914579595 @default.
- W2939644740 doi "https://doi.org/10.1016/j.neunet.2019.04.007" @default.
- W2939644740 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31005852" @default.
- W2939644740 hasPublicationYear "2019" @default.
- W2939644740 type Work @default.
- W2939644740 sameAs 2939644740 @default.
- W2939644740 citedByCount "18" @default.
- W2939644740 countsByYear W29396447402019 @default.
- W2939644740 countsByYear W29396447402020 @default.
- W2939644740 countsByYear W29396447402021 @default.
- W2939644740 countsByYear W29396447402022 @default.
- W2939644740 countsByYear W29396447402023 @default.
- W2939644740 crossrefType "journal-article" @default.
- W2939644740 hasAuthorship W2939644740A5013928795 @default.
- W2939644740 hasAuthorship W2939644740A5036528581 @default.
- W2939644740 hasAuthorship W2939644740A5070490171 @default.
- W2939644740 hasConcept C111472728 @default.
- W2939644740 hasConcept C11413529 @default.
- W2939644740 hasConcept C121332964 @default.
- W2939644740 hasConcept C126255220 @default.
- W2939644740 hasConcept C134306372 @default.
- W2939644740 hasConcept C138885662 @default.
- W2939644740 hasConcept C154945302 @default.
- W2939644740 hasConcept C158622935 @default.
- W2939644740 hasConcept C164660894 @default.
- W2939644740 hasConcept C17095337 @default.
- W2939644740 hasConcept C33923547 @default.
- W2939644740 hasConcept C41008148 @default.
- W2939644740 hasConcept C50644808 @default.
- W2939644740 hasConcept C62520636 @default.
- W2939644740 hasConcept C75553542 @default.
- W2939644740 hasConceptScore W2939644740C111472728 @default.