Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939669392> ?p ?o ?g. }
- W2939669392 endingPage "927" @default.
- W2939669392 startingPage "918" @default.
- W2939669392 abstract "The Gene regulatory network analysis is one of the gene expression data analysis tasks. Gene regulatory network goal is determining the topological order of genes interactions. Moreover, the regulatory network is a vital for understanding genes influence on each other. However, the main challenge confronting gene regulatory network algorithms is the massive data size. Where, the algorithm runtime is relative to the data size. This paper presents a Parallel computation for Sparse Network Component Analysis (PSparseNCA) with application on gene regulatory network. PSparseNCA is a parallel version of SparseNCA. PSparseNCA enhanced the computation of SparseNCA using a distributed computing model. Where, the workload is distributed among P processing nodes, PSparseNCA is more efficient than SparseNCA. It achieved a better performance and its speedup reached 12.33. In addition, PsparseNCA complexity is O(NM2/P) instead of O(NM2) for SparseNCA." @default.
- W2939669392 created "2019-04-25" @default.
- W2939669392 creator A5011000412 @default.
- W2939669392 creator A5043303783 @default.
- W2939669392 creator A5056294832 @default.
- W2939669392 creator A5059446890 @default.
- W2939669392 date "2019-03-17" @default.
- W2939669392 modified "2023-10-17" @default.
- W2939669392 title "Parallel Computation for Sparse Network Component Analysis" @default.
- W2939669392 cites W1908496070 @default.
- W2939669392 cites W1970156673 @default.
- W2939669392 cites W1995215542 @default.
- W2939669392 cites W1995949855 @default.
- W2939669392 cites W2013947447 @default.
- W2939669392 cites W2062283764 @default.
- W2939669392 cites W2069645361 @default.
- W2939669392 cites W2074157239 @default.
- W2939669392 cites W2083850701 @default.
- W2939669392 cites W2084466582 @default.
- W2939669392 cites W2106013076 @default.
- W2939669392 cites W2109887535 @default.
- W2939669392 cites W2113387206 @default.
- W2939669392 cites W2122708083 @default.
- W2939669392 cites W2128962304 @default.
- W2939669392 cites W2133068979 @default.
- W2939669392 cites W2137683543 @default.
- W2939669392 cites W2139939149 @default.
- W2939669392 cites W2141224535 @default.
- W2939669392 cites W2150926065 @default.
- W2939669392 cites W2151038079 @default.
- W2939669392 cites W2153983456 @default.
- W2939669392 cites W2155120241 @default.
- W2939669392 cites W2161868542 @default.
- W2939669392 cites W2166760533 @default.
- W2939669392 cites W2193102203 @default.
- W2939669392 cites W2194684942 @default.
- W2939669392 cites W2303875941 @default.
- W2939669392 cites W2323257522 @default.
- W2939669392 cites W2342019990 @default.
- W2939669392 cites W2426902362 @default.
- W2939669392 cites W2586478664 @default.
- W2939669392 cites W2736215812 @default.
- W2939669392 cites W2770698138 @default.
- W2939669392 cites W2811477241 @default.
- W2939669392 cites W2850647469 @default.
- W2939669392 cites W2897069326 @default.
- W2939669392 cites W2950199998 @default.
- W2939669392 cites W4205778870 @default.
- W2939669392 cites W4213387068 @default.
- W2939669392 cites W4245668478 @default.
- W2939669392 cites W4251780164 @default.
- W2939669392 cites W4253789906 @default.
- W2939669392 cites W4298870595 @default.
- W2939669392 doi "https://doi.org/10.1007/978-3-030-14118-9_90" @default.
- W2939669392 hasPublicationYear "2019" @default.
- W2939669392 type Work @default.
- W2939669392 sameAs 2939669392 @default.
- W2939669392 citedByCount "2" @default.
- W2939669392 countsByYear W29396693922019 @default.
- W2939669392 countsByYear W29396693922021 @default.
- W2939669392 crossrefType "book-chapter" @default.
- W2939669392 hasAuthorship W2939669392A5011000412 @default.
- W2939669392 hasAuthorship W2939669392A5043303783 @default.
- W2939669392 hasAuthorship W2939669392A5056294832 @default.
- W2939669392 hasAuthorship W2939669392A5059446890 @default.
- W2939669392 hasConcept C104317684 @default.
- W2939669392 hasConcept C111919701 @default.
- W2939669392 hasConcept C11413529 @default.
- W2939669392 hasConcept C120314980 @default.
- W2939669392 hasConcept C121332964 @default.
- W2939669392 hasConcept C150194340 @default.
- W2939669392 hasConcept C168167062 @default.
- W2939669392 hasConcept C173608175 @default.
- W2939669392 hasConcept C2778476105 @default.
- W2939669392 hasConcept C41008148 @default.
- W2939669392 hasConcept C45374587 @default.
- W2939669392 hasConcept C54355233 @default.
- W2939669392 hasConcept C67339327 @default.
- W2939669392 hasConcept C68339613 @default.
- W2939669392 hasConcept C80444323 @default.
- W2939669392 hasConcept C86803240 @default.
- W2939669392 hasConcept C97355855 @default.
- W2939669392 hasConceptScore W2939669392C104317684 @default.
- W2939669392 hasConceptScore W2939669392C111919701 @default.
- W2939669392 hasConceptScore W2939669392C11413529 @default.
- W2939669392 hasConceptScore W2939669392C120314980 @default.
- W2939669392 hasConceptScore W2939669392C121332964 @default.
- W2939669392 hasConceptScore W2939669392C150194340 @default.
- W2939669392 hasConceptScore W2939669392C168167062 @default.
- W2939669392 hasConceptScore W2939669392C173608175 @default.
- W2939669392 hasConceptScore W2939669392C2778476105 @default.
- W2939669392 hasConceptScore W2939669392C41008148 @default.
- W2939669392 hasConceptScore W2939669392C45374587 @default.
- W2939669392 hasConceptScore W2939669392C54355233 @default.
- W2939669392 hasConceptScore W2939669392C67339327 @default.
- W2939669392 hasConceptScore W2939669392C68339613 @default.
- W2939669392 hasConceptScore W2939669392C80444323 @default.
- W2939669392 hasConceptScore W2939669392C86803240 @default.