Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939680360> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2939680360 endingPage "428" @default.
- W2939680360 startingPage "405" @default.
- W2939680360 abstract "An algorithm based on a hierarchical Bayesian model is introduced to separate sources highly overlapping in time and frequency and observed through correlated references. The method is applied to internal combustion (IC) engine signals with the aim of separating the contributions due to different physical origins. The results are compared to the ones provided by classical Wiener filter. The Bayesian context allows correlated references to be taken into account with no consequences on the identifiability of the sources, thanks to the possibility of providing some regularizing prior information in the form of Bayesian prior laws. Moreover, the credibility interval on the estimated sources derives directly from the adopted sampling strategy. Finally, it is shown in a simple case that the proposed algorithm can be rewritten as a weighted sum of the classical and cyclic Wiener filters proposed by Pruvost in 2009. As opposed to them, the present algorithm autonomously chooses one or the other depending on the characteristics of the analysed signals. Even if the development context is the separation of the sources in an IC engine, the presented method is general and can be applied to any source separation problem." @default.
- W2939680360 created "2019-04-25" @default.
- W2939680360 creator A5005535866 @default.
- W2939680360 creator A5044151045 @default.
- W2939680360 creator A5069521598 @default.
- W2939680360 creator A5076879793 @default.
- W2939680360 date "2019-08-01" @default.
- W2939680360 modified "2023-10-13" @default.
- W2939680360 title "Engine noise separation through Gibbs sampling in a hierarchical Bayesian model" @default.
- W2939680360 cites W1967780923 @default.
- W2939680360 cites W1970166607 @default.
- W2939680360 cites W1989914957 @default.
- W2939680360 cites W2013005142 @default.
- W2939680360 cites W2028328787 @default.
- W2939680360 cites W2095569796 @default.
- W2939680360 doi "https://doi.org/10.1016/j.ymssp.2019.03.040" @default.
- W2939680360 hasPublicationYear "2019" @default.
- W2939680360 type Work @default.
- W2939680360 sameAs 2939680360 @default.
- W2939680360 citedByCount "5" @default.
- W2939680360 countsByYear W29396803602020 @default.
- W2939680360 countsByYear W29396803602021 @default.
- W2939680360 countsByYear W29396803602022 @default.
- W2939680360 crossrefType "journal-article" @default.
- W2939680360 hasAuthorship W2939680360A5005535866 @default.
- W2939680360 hasAuthorship W2939680360A5044151045 @default.
- W2939680360 hasAuthorship W2939680360A5069521598 @default.
- W2939680360 hasAuthorship W2939680360A5076879793 @default.
- W2939680360 hasBestOaLocation W29396803601 @default.
- W2939680360 hasConcept C106131492 @default.
- W2939680360 hasConcept C107673813 @default.
- W2939680360 hasConcept C11413529 @default.
- W2939680360 hasConcept C115961682 @default.
- W2939680360 hasConcept C119857082 @default.
- W2939680360 hasConcept C122770356 @default.
- W2939680360 hasConcept C140779682 @default.
- W2939680360 hasConcept C151730666 @default.
- W2939680360 hasConcept C154945302 @default.
- W2939680360 hasConcept C158424031 @default.
- W2939680360 hasConcept C18537770 @default.
- W2939680360 hasConcept C2776864781 @default.
- W2939680360 hasConcept C2779343474 @default.
- W2939680360 hasConcept C31972630 @default.
- W2939680360 hasConcept C33923547 @default.
- W2939680360 hasConcept C41008148 @default.
- W2939680360 hasConcept C86803240 @default.
- W2939680360 hasConcept C99498987 @default.
- W2939680360 hasConceptScore W2939680360C106131492 @default.
- W2939680360 hasConceptScore W2939680360C107673813 @default.
- W2939680360 hasConceptScore W2939680360C11413529 @default.
- W2939680360 hasConceptScore W2939680360C115961682 @default.
- W2939680360 hasConceptScore W2939680360C119857082 @default.
- W2939680360 hasConceptScore W2939680360C122770356 @default.
- W2939680360 hasConceptScore W2939680360C140779682 @default.
- W2939680360 hasConceptScore W2939680360C151730666 @default.
- W2939680360 hasConceptScore W2939680360C154945302 @default.
- W2939680360 hasConceptScore W2939680360C158424031 @default.
- W2939680360 hasConceptScore W2939680360C18537770 @default.
- W2939680360 hasConceptScore W2939680360C2776864781 @default.
- W2939680360 hasConceptScore W2939680360C2779343474 @default.
- W2939680360 hasConceptScore W2939680360C31972630 @default.
- W2939680360 hasConceptScore W2939680360C33923547 @default.
- W2939680360 hasConceptScore W2939680360C41008148 @default.
- W2939680360 hasConceptScore W2939680360C86803240 @default.
- W2939680360 hasConceptScore W2939680360C99498987 @default.
- W2939680360 hasFunder F4320320883 @default.
- W2939680360 hasLocation W29396803601 @default.
- W2939680360 hasLocation W29396803602 @default.
- W2939680360 hasLocation W29396803603 @default.
- W2939680360 hasLocation W29396803604 @default.
- W2939680360 hasLocation W29396803605 @default.
- W2939680360 hasOpenAccess W2939680360 @default.
- W2939680360 hasPrimaryLocation W29396803601 @default.
- W2939680360 hasRelatedWork W2126344578 @default.
- W2939680360 hasRelatedWork W2130037893 @default.
- W2939680360 hasRelatedWork W2383219934 @default.
- W2939680360 hasRelatedWork W2386767533 @default.
- W2939680360 hasRelatedWork W2899084033 @default.
- W2939680360 hasRelatedWork W2939680360 @default.
- W2939680360 hasRelatedWork W2947383535 @default.
- W2939680360 hasRelatedWork W3102233618 @default.
- W2939680360 hasRelatedWork W4248479957 @default.
- W2939680360 hasRelatedWork W2476490447 @default.
- W2939680360 hasVolume "128" @default.
- W2939680360 isParatext "false" @default.
- W2939680360 isRetracted "false" @default.
- W2939680360 magId "2939680360" @default.
- W2939680360 workType "article" @default.