Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939843948> ?p ?o ?g. }
- W2939843948 endingPage "218" @default.
- W2939843948 startingPage "208" @default.
- W2939843948 abstract "A latent Dirichlet allocation (LDA) model is a machine learning technique to identify latent topics from text corpora within a Bayesian hierarchical framework. Current popular inferential methods to fit the LDA model are based on variational Bayesian inference, collapsed Gibbs sampling, or a combination of these. Because these methods assume a unimodal distribution over topics, however, they can suffer from large bias when text corpora consist of various clusters with different topic distributions. This paper proposes an inferential LDA method to efficiently obtain unbiased estimates under flexible modeling for heterogeneous text corpora with the method of partial collapse and the Dirichlet process mixtures. The method is illustrated using a simulation study and an application to a corpus of 1300 documents from neural information processing systems (NIPS) conference articles during the period of 2000–2002 and British Broadcasting Corporation (BBC) news articles during the period of 2004–2005." @default.
- W2939843948 created "2019-04-25" @default.
- W2939843948 creator A5003130893 @default.
- W2939843948 creator A5015048868 @default.
- W2939843948 creator A5065459542 @default.
- W2939843948 date "2019-10-01" @default.
- W2939843948 modified "2023-10-06" @default.
- W2939843948 title "Partially collapsed Gibbs sampling for latent Dirichlet allocation" @default.
- W2939843948 cites W1989692914 @default.
- W2939843948 cites W2001082470 @default.
- W2939843948 cites W2005564522 @default.
- W2939843948 cites W2033765726 @default.
- W2939843948 cites W2034861105 @default.
- W2939843948 cites W2035462454 @default.
- W2939843948 cites W2037668034 @default.
- W2939843948 cites W2039899245 @default.
- W2939843948 cites W2052041811 @default.
- W2939843948 cites W2072169887 @default.
- W2939843948 cites W2118034653 @default.
- W2939843948 cites W2156221504 @default.
- W2939843948 cites W2158266063 @default.
- W2939843948 cites W2173213060 @default.
- W2939843948 cites W2184087280 @default.
- W2939843948 cites W2224081243 @default.
- W2939843948 cites W2603938954 @default.
- W2939843948 cites W2738361418 @default.
- W2939843948 cites W3101950489 @default.
- W2939843948 cites W4245883374 @default.
- W2939843948 cites W2046755243 @default.
- W2939843948 doi "https://doi.org/10.1016/j.eswa.2019.04.028" @default.
- W2939843948 hasPublicationYear "2019" @default.
- W2939843948 type Work @default.
- W2939843948 sameAs 2939843948 @default.
- W2939843948 citedByCount "13" @default.
- W2939843948 countsByYear W29398439482019 @default.
- W2939843948 countsByYear W29398439482020 @default.
- W2939843948 countsByYear W29398439482021 @default.
- W2939843948 countsByYear W29398439482022 @default.
- W2939843948 countsByYear W29398439482023 @default.
- W2939843948 crossrefType "journal-article" @default.
- W2939843948 hasAuthorship W2939843948A5003130893 @default.
- W2939843948 hasAuthorship W2939843948A5015048868 @default.
- W2939843948 hasAuthorship W2939843948A5065459542 @default.
- W2939843948 hasConcept C106131492 @default.
- W2939843948 hasConcept C107673813 @default.
- W2939843948 hasConcept C119857082 @default.
- W2939843948 hasConcept C124101348 @default.
- W2939843948 hasConcept C134306372 @default.
- W2939843948 hasConcept C140779682 @default.
- W2939843948 hasConcept C141318989 @default.
- W2939843948 hasConcept C154945302 @default.
- W2939843948 hasConcept C158424031 @default.
- W2939843948 hasConcept C160234255 @default.
- W2939843948 hasConcept C169214877 @default.
- W2939843948 hasConcept C171686336 @default.
- W2939843948 hasConcept C182310444 @default.
- W2939843948 hasConcept C204321447 @default.
- W2939843948 hasConcept C2776214188 @default.
- W2939843948 hasConcept C2781280628 @default.
- W2939843948 hasConcept C31972630 @default.
- W2939843948 hasConcept C33923547 @default.
- W2939843948 hasConcept C41008148 @default.
- W2939843948 hasConcept C500882744 @default.
- W2939843948 hasConceptScore W2939843948C106131492 @default.
- W2939843948 hasConceptScore W2939843948C107673813 @default.
- W2939843948 hasConceptScore W2939843948C119857082 @default.
- W2939843948 hasConceptScore W2939843948C124101348 @default.
- W2939843948 hasConceptScore W2939843948C134306372 @default.
- W2939843948 hasConceptScore W2939843948C140779682 @default.
- W2939843948 hasConceptScore W2939843948C141318989 @default.
- W2939843948 hasConceptScore W2939843948C154945302 @default.
- W2939843948 hasConceptScore W2939843948C158424031 @default.
- W2939843948 hasConceptScore W2939843948C160234255 @default.
- W2939843948 hasConceptScore W2939843948C169214877 @default.
- W2939843948 hasConceptScore W2939843948C171686336 @default.
- W2939843948 hasConceptScore W2939843948C182310444 @default.
- W2939843948 hasConceptScore W2939843948C204321447 @default.
- W2939843948 hasConceptScore W2939843948C2776214188 @default.
- W2939843948 hasConceptScore W2939843948C2781280628 @default.
- W2939843948 hasConceptScore W2939843948C31972630 @default.
- W2939843948 hasConceptScore W2939843948C33923547 @default.
- W2939843948 hasConceptScore W2939843948C41008148 @default.
- W2939843948 hasConceptScore W2939843948C500882744 @default.
- W2939843948 hasFunder F4320311649 @default.
- W2939843948 hasFunder F4320322036 @default.
- W2939843948 hasFunder F4320322120 @default.
- W2939843948 hasLocation W29398439481 @default.
- W2939843948 hasOpenAccess W2939843948 @default.
- W2939843948 hasPrimaryLocation W29398439481 @default.
- W2939843948 hasRelatedWork W2024329736 @default.
- W2939843948 hasRelatedWork W2171278750 @default.
- W2939843948 hasRelatedWork W2187741934 @default.
- W2939843948 hasRelatedWork W2388055569 @default.
- W2939843948 hasRelatedWork W2939843948 @default.
- W2939843948 hasRelatedWork W2950322393 @default.
- W2939843948 hasRelatedWork W2950770596 @default.
- W2939843948 hasRelatedWork W3123277936 @default.
- W2939843948 hasRelatedWork W3214273223 @default.