Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939979914> ?p ?o ?g. }
- W2939979914 endingPage "264" @default.
- W2939979914 startingPage "231" @default.
- W2939979914 abstract "This paper reports the results of an experiment in high energy physics: using the power of the crowd to solve difficult experimental problems linked to tracking accurately the trajectory of particles in the Large Hadron Collider (LHC). This experiment took the form of a machine learning challenge organized in 2018: the Tracking Machine Learning Challenge (TrackML). Its results were discussed at the competition session at the Neural Information Processing Systems conference (NeurIPS 2018). Given 100.000 points, the participants had to connect them into about 10.000 arcs of circles, following the trajectory of particles issued from very high energy proton collisions. The competition was difficult with a dozen front-runners well ahead of a pack. The single competition score is shown to be accurate and effective in selecting the best algorithms from the domain point of view. The competition has exposed a diversity of approaches, with various roles for Machine Learning, a number of which are discussed in the document" @default.
- W2939979914 created "2019-04-25" @default.
- W2939979914 creator A5002025201 @default.
- W2939979914 creator A5004130425 @default.
- W2939979914 creator A5006360335 @default.
- W2939979914 creator A5015951124 @default.
- W2939979914 creator A5025642549 @default.
- W2939979914 creator A5030070666 @default.
- W2939979914 creator A5030347564 @default.
- W2939979914 creator A5031094584 @default.
- W2939979914 creator A5035390796 @default.
- W2939979914 creator A5036547514 @default.
- W2939979914 creator A5039105937 @default.
- W2939979914 creator A5041107346 @default.
- W2939979914 creator A5048738722 @default.
- W2939979914 creator A5049640635 @default.
- W2939979914 creator A5051264002 @default.
- W2939979914 creator A5056257612 @default.
- W2939979914 creator A5066291963 @default.
- W2939979914 creator A5066410928 @default.
- W2939979914 creator A5070414855 @default.
- W2939979914 creator A5072470886 @default.
- W2939979914 creator A5073281377 @default.
- W2939979914 creator A5074672912 @default.
- W2939979914 creator A5075757240 @default.
- W2939979914 creator A5077606127 @default.
- W2939979914 creator A5081549062 @default.
- W2939979914 creator A5082871561 @default.
- W2939979914 creator A5083103730 @default.
- W2939979914 date "2019-11-30" @default.
- W2939979914 modified "2023-10-09" @default.
- W2939979914 title "The Tracking Machine Learning Challenge: Accuracy Phase" @default.
- W2939979914 cites W2025314686 @default.
- W2939979914 cites W2033403400 @default.
- W2939979914 cites W2061939373 @default.
- W2939979914 cites W2064675550 @default.
- W2939979914 cites W2090940374 @default.
- W2939979914 cites W2157305458 @default.
- W2939979914 cites W2163097950 @default.
- W2939979914 cites W2165558283 @default.
- W2939979914 cites W2743374906 @default.
- W2939979914 cites W2744673573 @default.
- W2939979914 cites W4252684946 @default.
- W2939979914 doi "https://doi.org/10.1007/978-3-030-29135-8_9" @default.
- W2939979914 hasPublicationYear "2019" @default.
- W2939979914 type Work @default.
- W2939979914 sameAs 2939979914 @default.
- W2939979914 citedByCount "34" @default.
- W2939979914 countsByYear W29399799142020 @default.
- W2939979914 countsByYear W29399799142021 @default.
- W2939979914 countsByYear W29399799142022 @default.
- W2939979914 countsByYear W29399799142023 @default.
- W2939979914 crossrefType "book-chapter" @default.
- W2939979914 hasAuthorship W2939979914A5002025201 @default.
- W2939979914 hasAuthorship W2939979914A5004130425 @default.
- W2939979914 hasAuthorship W2939979914A5006360335 @default.
- W2939979914 hasAuthorship W2939979914A5015951124 @default.
- W2939979914 hasAuthorship W2939979914A5025642549 @default.
- W2939979914 hasAuthorship W2939979914A5030070666 @default.
- W2939979914 hasAuthorship W2939979914A5030347564 @default.
- W2939979914 hasAuthorship W2939979914A5031094584 @default.
- W2939979914 hasAuthorship W2939979914A5035390796 @default.
- W2939979914 hasAuthorship W2939979914A5036547514 @default.
- W2939979914 hasAuthorship W2939979914A5039105937 @default.
- W2939979914 hasAuthorship W2939979914A5041107346 @default.
- W2939979914 hasAuthorship W2939979914A5048738722 @default.
- W2939979914 hasAuthorship W2939979914A5049640635 @default.
- W2939979914 hasAuthorship W2939979914A5051264002 @default.
- W2939979914 hasAuthorship W2939979914A5056257612 @default.
- W2939979914 hasAuthorship W2939979914A5066291963 @default.
- W2939979914 hasAuthorship W2939979914A5066410928 @default.
- W2939979914 hasAuthorship W2939979914A5070414855 @default.
- W2939979914 hasAuthorship W2939979914A5072470886 @default.
- W2939979914 hasAuthorship W2939979914A5073281377 @default.
- W2939979914 hasAuthorship W2939979914A5074672912 @default.
- W2939979914 hasAuthorship W2939979914A5075757240 @default.
- W2939979914 hasAuthorship W2939979914A5077606127 @default.
- W2939979914 hasAuthorship W2939979914A5081549062 @default.
- W2939979914 hasAuthorship W2939979914A5082871561 @default.
- W2939979914 hasAuthorship W2939979914A5083103730 @default.
- W2939979914 hasBestOaLocation W29399799143 @default.
- W2939979914 hasConcept C105795698 @default.
- W2939979914 hasConcept C109214941 @default.
- W2939979914 hasConcept C119857082 @default.
- W2939979914 hasConcept C121332964 @default.
- W2939979914 hasConcept C1276947 @default.
- W2939979914 hasConcept C134306372 @default.
- W2939979914 hasConcept C13662910 @default.
- W2939979914 hasConcept C136764020 @default.
- W2939979914 hasConcept C154945302 @default.
- W2939979914 hasConcept C15744967 @default.
- W2939979914 hasConcept C186370098 @default.
- W2939979914 hasConcept C18903297 @default.
- W2939979914 hasConcept C19417346 @default.
- W2939979914 hasConcept C2524010 @default.
- W2939979914 hasConcept C2775936607 @default.
- W2939979914 hasConcept C2779182362 @default.
- W2939979914 hasConcept C28719098 @default.