Matches in SemOpenAlex for { <https://semopenalex.org/work/W2939984658> ?p ?o ?g. }
- W2939984658 endingPage "1179" @default.
- W2939984658 startingPage "1161" @default.
- W2939984658 abstract "Since the outbreak of the financial crisis, the major global credit rating agencies have implemented significant changes to their methodologies to assess the sovereign credit risk. Therefore, bond rating prediction has become an interesting potential for investors and financial institutions. Previous research studies in this field have applied traditional statistical methods to develop models which provide prediction accuracy. However, no overall distinguished methods have been used in predicting bond ratings. Moreover, recent studies have suggested ensembles of classifiers that may be used in bond rating prediction. This article proposes an improved machine learning aimed to predict the rating of financial bonds. We empirically compare the classifiers ranging from logistic regression and discriminant analysis to nonparametric classifiers, such as support vector machine, neural networks, the cost-sensitive decision tree algorithm and deep neural networks. Three real-world bond rating data sets were selected to check the effectiveness and the viability of the set of the classifiers. The experimental results confirm that data mining methods can represent an alternative to the traditional prediction models of bond rating." @default.
- W2939984658 created "2019-04-25" @default.
- W2939984658 creator A5008489164 @default.
- W2939984658 creator A5022785676 @default.
- W2939984658 creator A5044919632 @default.
- W2939984658 creator A5051507049 @default.
- W2939984658 date "2019-04-20" @default.
- W2939984658 modified "2023-10-01" @default.
- W2939984658 title "Machine learning models and cost-sensitive decision trees for bond rating prediction" @default.
- W2939984658 cites W1503605645 @default.
- W2939984658 cites W1515231270 @default.
- W2939984658 cites W1964159032 @default.
- W2939984658 cites W1966303763 @default.
- W2939984658 cites W1966528570 @default.
- W2939984658 cites W1966873979 @default.
- W2939984658 cites W1970277521 @default.
- W2939984658 cites W1971141266 @default.
- W2939984658 cites W1975102236 @default.
- W2939984658 cites W1979686445 @default.
- W2939984658 cites W1982542799 @default.
- W2939984658 cites W1984323748 @default.
- W2939984658 cites W1984533548 @default.
- W2939984658 cites W1984712439 @default.
- W2939984658 cites W1989005324 @default.
- W2939984658 cites W1994085451 @default.
- W2939984658 cites W1995599002 @default.
- W2939984658 cites W1998492739 @default.
- W2939984658 cites W2002691329 @default.
- W2939984658 cites W2004076523 @default.
- W2939984658 cites W2004473119 @default.
- W2939984658 cites W2006680549 @default.
- W2939984658 cites W2018276332 @default.
- W2939984658 cites W2020439163 @default.
- W2939984658 cites W2023933938 @default.
- W2939984658 cites W2026316875 @default.
- W2939984658 cites W2029981389 @default.
- W2939984658 cites W2032435122 @default.
- W2939984658 cites W2034966198 @default.
- W2939984658 cites W2035365877 @default.
- W2939984658 cites W2041101399 @default.
- W2939984658 cites W2048865854 @default.
- W2939984658 cites W2058947616 @default.
- W2939984658 cites W2063556286 @default.
- W2939984658 cites W2063922127 @default.
- W2939984658 cites W2065702555 @default.
- W2939984658 cites W2067223851 @default.
- W2939984658 cites W2070534370 @default.
- W2939984658 cites W2078423146 @default.
- W2939984658 cites W2078684405 @default.
- W2939984658 cites W2079402140 @default.
- W2939984658 cites W2083352970 @default.
- W2939984658 cites W2085373553 @default.
- W2939984658 cites W2085831731 @default.
- W2939984658 cites W2086184041 @default.
- W2939984658 cites W2088937989 @default.
- W2939984658 cites W2097752063 @default.
- W2939984658 cites W2098307847 @default.
- W2939984658 cites W2103614420 @default.
- W2939984658 cites W2112627523 @default.
- W2939984658 cites W2117958269 @default.
- W2939984658 cites W2119191234 @default.
- W2939984658 cites W2128915443 @default.
- W2939984658 cites W2130508343 @default.
- W2939984658 cites W2139389379 @default.
- W2939984658 cites W2149706766 @default.
- W2939984658 cites W2157124852 @default.
- W2939984658 cites W2159699146 @default.
- W2939984658 cites W2164330572 @default.
- W2939984658 cites W2190746225 @default.
- W2939984658 cites W2195636112 @default.
- W2939984658 cites W2252402836 @default.
- W2939984658 cites W2273893358 @default.
- W2939984658 cites W2278519563 @default.
- W2939984658 cites W2278958816 @default.
- W2939984658 cites W2293081571 @default.
- W2939984658 cites W2296034778 @default.
- W2939984658 cites W2314105684 @default.
- W2939984658 cites W2336505047 @default.
- W2939984658 cites W2342352817 @default.
- W2939984658 cites W2560858617 @default.
- W2939984658 cites W2562923621 @default.
- W2939984658 cites W2571622694 @default.
- W2939984658 cites W2579061498 @default.
- W2939984658 cites W2586297576 @default.
- W2939984658 cites W2587043449 @default.
- W2939984658 cites W2589113617 @default.
- W2939984658 cites W2593370983 @default.
- W2939984658 cites W2601707599 @default.
- W2939984658 cites W2606916050 @default.
- W2939984658 cites W2607162077 @default.
- W2939984658 cites W2611785822 @default.
- W2939984658 cites W2614851820 @default.
- W2939984658 cites W2615251366 @default.
- W2939984658 cites W2622973700 @default.
- W2939984658 cites W2730245908 @default.
- W2939984658 cites W2736490867 @default.
- W2939984658 cites W2751084232 @default.
- W2939984658 cites W2761700016 @default.