Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940009787> ?p ?o ?g. }
- W2940009787 endingPage "1" @default.
- W2940009787 startingPage "1" @default.
- W2940009787 abstract "Feature extraction and feature selection have been regarded as two independent dimensionality reduction methods in most of the existing literature. In this paper, we propose to integrate both approaches into a unified framework and design an unsupervised linear feature selective projection (FSP) for feature extraction with low-rank embedding and dual Laplacian regularization, with the aim to exploit the intrinsic relationship among data and suppress the impact of noise. Specifically, a projection matrix with an l <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norm regularization is introduced to project original high dimensional data points into a new subspace with lower dimension, where the l <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norm regularization can endow the projection with good interpretability. We deploy a coefficient matrix with low rank constraint to reconstruct the data points and the l <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norm is imposed to regularize the data reconstruction errors in the low-dimensional subspace and make FSP robust to noise. Furthermore, a dual graph Laplacian regularization term is imposed on the low dimensional data and data reconstruction matrix for preserving the local manifold geometrical structure of data. Finally, an alternatively iterative algorithm is carefully designed for solving the proposed optimization model. Theoretical convergence and computational complexity analysis of the algorithm are also provided. Comprehensive experiments on various benchmark datasets have been carried out to evaluate the performance of the proposed FSP. As indicated, our algorithm significantly outperforms other state-of-the-art methods for feature extraction." @default.
- W2940009787 created "2019-04-25" @default.
- W2940009787 creator A5009116003 @default.
- W2940009787 creator A5013113719 @default.
- W2940009787 creator A5033240507 @default.
- W2940009787 creator A5034994342 @default.
- W2940009787 creator A5048261783 @default.
- W2940009787 creator A5078507701 @default.
- W2940009787 creator A5085719140 @default.
- W2940009787 creator A5090731971 @default.
- W2940009787 date "2019-01-01" @default.
- W2940009787 modified "2023-10-18" @default.
- W2940009787 title "Feature Selective Projection with Low-Rank Embedding and Dual Laplacian Regularization" @default.
- W2940009787 cites W1166921479 @default.
- W2940009787 cites W1495044547 @default.
- W2940009787 cites W1572158434 @default.
- W2940009787 cites W1644402181 @default.
- W2940009787 cites W1672347394 @default.
- W2940009787 cites W1884731728 @default.
- W2940009787 cites W1922404199 @default.
- W2940009787 cites W1970089434 @default.
- W2940009787 cites W1975113332 @default.
- W2940009787 cites W1977868384 @default.
- W2940009787 cites W1980132690 @default.
- W2940009787 cites W1997011019 @default.
- W2940009787 cites W1997201895 @default.
- W2940009787 cites W2001141328 @default.
- W2940009787 cites W2006793117 @default.
- W2940009787 cites W2010755682 @default.
- W2940009787 cites W2011832962 @default.
- W2940009787 cites W2021770241 @default.
- W2940009787 cites W2023512014 @default.
- W2940009787 cites W2042683698 @default.
- W2940009787 cites W2043060682 @default.
- W2940009787 cites W2053186076 @default.
- W2940009787 cites W2060542593 @default.
- W2940009787 cites W2064886835 @default.
- W2940009787 cites W2065220650 @default.
- W2940009787 cites W2070127246 @default.
- W2940009787 cites W2083666679 @default.
- W2940009787 cites W2086504823 @default.
- W2940009787 cites W2088748973 @default.
- W2940009787 cites W2088780712 @default.
- W2940009787 cites W2089323474 @default.
- W2940009787 cites W2096608935 @default.
- W2940009787 cites W2097308346 @default.
- W2940009787 cites W2103560185 @default.
- W2940009787 cites W2103972604 @default.
- W2940009787 cites W2104294146 @default.
- W2940009787 cites W2105166326 @default.
- W2940009787 cites W2108119513 @default.
- W2940009787 cites W2111427896 @default.
- W2940009787 cites W2112109082 @default.
- W2940009787 cites W2112796928 @default.
- W2940009787 cites W2113590298 @default.
- W2940009787 cites W2117553576 @default.
- W2940009787 cites W2119925377 @default.
- W2940009787 cites W2120886275 @default.
- W2940009787 cites W2121647436 @default.
- W2940009787 cites W2128873747 @default.
- W2940009787 cites W2132549764 @default.
- W2940009787 cites W2141042808 @default.
- W2940009787 cites W2144990628 @default.
- W2940009787 cites W2145962650 @default.
- W2940009787 cites W2157317320 @default.
- W2940009787 cites W2158933803 @default.
- W2940009787 cites W2195250169 @default.
- W2940009787 cites W2209159500 @default.
- W2940009787 cites W2217442075 @default.
- W2940009787 cites W2262946425 @default.
- W2940009787 cites W2314735922 @default.
- W2940009787 cites W2323909273 @default.
- W2940009787 cites W2344681634 @default.
- W2940009787 cites W2509903396 @default.
- W2940009787 cites W2530006000 @default.
- W2940009787 cites W2535832105 @default.
- W2940009787 cites W2550093240 @default.
- W2940009787 cites W2551492216 @default.
- W2940009787 cites W2559997726 @default.
- W2940009787 cites W2576167394 @default.
- W2940009787 cites W2595272553 @default.
- W2940009787 cites W2601469732 @default.
- W2940009787 cites W2608501919 @default.
- W2940009787 cites W2735797020 @default.
- W2940009787 cites W2741904151 @default.
- W2940009787 cites W2742050142 @default.
- W2940009787 cites W2774952377 @default.
- W2940009787 cites W2781829441 @default.
- W2940009787 cites W2790201703 @default.
- W2940009787 cites W2792991240 @default.
- W2940009787 cites W2794295488 @default.
- W2940009787 cites W2805194070 @default.
- W2940009787 cites W2833504722 @default.
- W2940009787 cites W2963714593 @default.
- W2940009787 cites W2963840432 @default.
- W2940009787 cites W3148981562 @default.
- W2940009787 cites W4253515568 @default.
- W2940009787 doi "https://doi.org/10.1109/tkde.2019.2911946" @default.