Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940124612> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2940124612 abstract "In this thesis we present a variety of new, continuous, Bayesian Gaussian-process-driven Cox process models. These are used to model sparse event data distributed on a continuous domain, where the events may have a tendency to cluster. These find direct use in application areas ranging from disease incidence modelling through to statistical cosmology, where the distribution of galaxies in the universe is weakly clustered due to the effects of dark matter. They may also be deployed in a more abstract sense, for example as a structured prior for network communications. In previous work, the difficulty of performing inference in Gaussian-process-driven Cox processes has hindered their application to large, high-dimensional datasets. We develop novel and computationally efficient inference schemes for these models as well as our own extensions to them, demonstrating an improvement on the existing state of the art using real data. In particular, we present the first known variational inference scheme for such models, which scales linearly with the size of the dataset. Spurred on to consider the problem of computationally efficient Bayesian inference in general, we tackle model evidence estimation. Arriving at an accurate measure of model evidence quickly allows for the objective measure of model fit, and ensures we select a set of assumptions which most closely embody the data-generating process. We deviate from the traditional core Monte Carlo estimator, and instead present a computationally efficient general Bayesian quadrature scheme for model evidence computation. This is the first such scheme which can be shown to be demonstrably wall-clock competitive with state of the art Monte Carlo approaches." @default.
- W2940124612 created "2019-04-25" @default.
- W2940124612 creator A5019477718 @default.
- W2940124612 date "2017-01-01" @default.
- W2940124612 modified "2023-09-28" @default.
- W2940124612 title "Towards efficient Bayesian inference : Cox processes and probabilistic integration" @default.
- W2940124612 hasPublicationYear "2017" @default.
- W2940124612 type Work @default.
- W2940124612 sameAs 2940124612 @default.
- W2940124612 citedByCount "0" @default.
- W2940124612 crossrefType "dissertation" @default.
- W2940124612 hasAuthorship W2940124612A5019477718 @default.
- W2940124612 hasConcept C105795698 @default.
- W2940124612 hasConcept C107673813 @default.
- W2940124612 hasConcept C11413529 @default.
- W2940124612 hasConcept C119857082 @default.
- W2940124612 hasConcept C121332964 @default.
- W2940124612 hasConcept C124101348 @default.
- W2940124612 hasConcept C154945302 @default.
- W2940124612 hasConcept C160234255 @default.
- W2940124612 hasConcept C163716315 @default.
- W2940124612 hasConcept C185429906 @default.
- W2940124612 hasConcept C2776214188 @default.
- W2940124612 hasConcept C2777472644 @default.
- W2940124612 hasConcept C33923547 @default.
- W2940124612 hasConcept C41008148 @default.
- W2940124612 hasConcept C61326573 @default.
- W2940124612 hasConcept C62520636 @default.
- W2940124612 hasConcept C80444323 @default.
- W2940124612 hasConceptScore W2940124612C105795698 @default.
- W2940124612 hasConceptScore W2940124612C107673813 @default.
- W2940124612 hasConceptScore W2940124612C11413529 @default.
- W2940124612 hasConceptScore W2940124612C119857082 @default.
- W2940124612 hasConceptScore W2940124612C121332964 @default.
- W2940124612 hasConceptScore W2940124612C124101348 @default.
- W2940124612 hasConceptScore W2940124612C154945302 @default.
- W2940124612 hasConceptScore W2940124612C160234255 @default.
- W2940124612 hasConceptScore W2940124612C163716315 @default.
- W2940124612 hasConceptScore W2940124612C185429906 @default.
- W2940124612 hasConceptScore W2940124612C2776214188 @default.
- W2940124612 hasConceptScore W2940124612C2777472644 @default.
- W2940124612 hasConceptScore W2940124612C33923547 @default.
- W2940124612 hasConceptScore W2940124612C41008148 @default.
- W2940124612 hasConceptScore W2940124612C61326573 @default.
- W2940124612 hasConceptScore W2940124612C62520636 @default.
- W2940124612 hasConceptScore W2940124612C80444323 @default.
- W2940124612 hasLocation W29401246121 @default.
- W2940124612 hasOpenAccess W2940124612 @default.
- W2940124612 hasPrimaryLocation W29401246121 @default.
- W2940124612 hasRelatedWork W2121693152 @default.
- W2940124612 hasRelatedWork W2183391071 @default.
- W2940124612 hasRelatedWork W2211503184 @default.
- W2940124612 hasRelatedWork W2559982436 @default.
- W2940124612 hasRelatedWork W2626452988 @default.
- W2940124612 hasRelatedWork W2790015441 @default.
- W2940124612 hasRelatedWork W2809217987 @default.
- W2940124612 hasRelatedWork W2810320904 @default.
- W2940124612 hasRelatedWork W2951336346 @default.
- W2940124612 hasRelatedWork W2951392481 @default.
- W2940124612 hasRelatedWork W2997933501 @default.
- W2940124612 hasRelatedWork W3008255512 @default.
- W2940124612 hasRelatedWork W3022346722 @default.
- W2940124612 hasRelatedWork W3118192969 @default.
- W2940124612 hasRelatedWork W3128611278 @default.
- W2940124612 hasRelatedWork W3141482514 @default.
- W2940124612 hasRelatedWork W3175364160 @default.
- W2940124612 hasRelatedWork W3183359936 @default.
- W2940124612 hasRelatedWork W3210763600 @default.
- W2940124612 hasRelatedWork W2988743537 @default.
- W2940124612 isParatext "false" @default.
- W2940124612 isRetracted "false" @default.
- W2940124612 magId "2940124612" @default.
- W2940124612 workType "dissertation" @default.