Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940197818> ?p ?o ?g. }
- W2940197818 endingPage "653" @default.
- W2940197818 startingPage "645" @default.
- W2940197818 abstract "Increased dissolved reactive phosphorus (DRP) fluxes in the Maumee River in the Western Lake Erie watershed have been cited as a cause of recent hypoxia and toxic algal blooms in Western Lake Erie. Dissolved reactive P is operationally defined as the molybdate-reactive P that passes through a 0.45-μm filter. Unfortunately, this 0.45-μm cutoff is not based on solute chemistry; rather, it is based on tradition dating back to the 1940s. This dissolved versus particulate operationally defined threshold may be limiting scientific understanding of the transport of reactive P in the Lake Erie watershed (and beyond). Naturally occurring nanoparticles smaller than 0.45 μm can pass through filters, inflating DRP values, as has been suggested by studies in other watersheds. Transmission electron microscopy of filtered samples from the Maumee River revealed nanoparticles of various mineralogy, which are rich in P. By analyzing public data, we estimate that approximately half of the DRP flux in the Maumee River is not truly dissolved orthophosphate; it is instead particulate P that has passed through 0.45-μm filters. We also conducted a centrifugation experiment on previously filtered samples that likewise removed 40% of DRP and 75% of Fe. The influence of nanoparticles on DRP loads to Lake Erie has implications, including (i) helping to elucidate where reactive P originates on the landscape, (ii) designing best management practices, and (iii) improving our models of ecological response of nonpoint P loading." @default.
- W2940197818 created "2019-04-25" @default.
- W2940197818 creator A5021499143 @default.
- W2940197818 creator A5070072290 @default.
- W2940197818 date "2019-05-01" @default.
- W2940197818 modified "2023-09-25" @default.
- W2940197818 title "Dissolved Reactive Phosphorus Loads to Western Lake Erie: The Hidden Influence of Nanoparticles" @default.
- W2940197818 cites W1966160743 @default.
- W2940197818 cites W1971285895 @default.
- W2940197818 cites W1978643296 @default.
- W2940197818 cites W1988009330 @default.
- W2940197818 cites W1992746944 @default.
- W2940197818 cites W2005460254 @default.
- W2940197818 cites W2012027509 @default.
- W2940197818 cites W2013609679 @default.
- W2940197818 cites W2015230269 @default.
- W2940197818 cites W2015888269 @default.
- W2940197818 cites W2021830527 @default.
- W2940197818 cites W2032436721 @default.
- W2940197818 cites W2037519492 @default.
- W2940197818 cites W2043417027 @default.
- W2940197818 cites W2045136634 @default.
- W2940197818 cites W2055071662 @default.
- W2940197818 cites W2059698287 @default.
- W2940197818 cites W2063428887 @default.
- W2940197818 cites W2063805841 @default.
- W2940197818 cites W2064440782 @default.
- W2940197818 cites W2072200925 @default.
- W2940197818 cites W2075435443 @default.
- W2940197818 cites W2075525539 @default.
- W2940197818 cites W2076290656 @default.
- W2940197818 cites W2078627623 @default.
- W2940197818 cites W2082374651 @default.
- W2940197818 cites W2082981352 @default.
- W2940197818 cites W2084378226 @default.
- W2940197818 cites W2087789869 @default.
- W2940197818 cites W2089337748 @default.
- W2940197818 cites W2089371554 @default.
- W2940197818 cites W2094902311 @default.
- W2940197818 cites W2101850973 @default.
- W2940197818 cites W2111915793 @default.
- W2940197818 cites W2122408144 @default.
- W2940197818 cites W2130011349 @default.
- W2940197818 cites W2135785160 @default.
- W2940197818 cites W2141887205 @default.
- W2940197818 cites W2146407232 @default.
- W2940197818 cites W2150498628 @default.
- W2940197818 cites W2151188421 @default.
- W2940197818 cites W2163203725 @default.
- W2940197818 cites W2164087962 @default.
- W2940197818 cites W2312627382 @default.
- W2940197818 cites W2314345143 @default.
- W2940197818 cites W2332525138 @default.
- W2940197818 cites W2337573314 @default.
- W2940197818 cites W2346248795 @default.
- W2940197818 cites W2346326547 @default.
- W2940197818 cites W2402885289 @default.
- W2940197818 cites W2461088101 @default.
- W2940197818 cites W2463421455 @default.
- W2940197818 cites W2514048373 @default.
- W2940197818 cites W2529378279 @default.
- W2940197818 cites W2572057180 @default.
- W2940197818 cites W2575884407 @default.
- W2940197818 cites W2590974619 @default.
- W2940197818 cites W2592372416 @default.
- W2940197818 cites W2770514069 @default.
- W2940197818 cites W2774014979 @default.
- W2940197818 cites W4239140356 @default.
- W2940197818 doi "https://doi.org/10.2134/jeq2018.05.0178" @default.
- W2940197818 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31180434" @default.
- W2940197818 hasPublicationYear "2019" @default.
- W2940197818 type Work @default.
- W2940197818 sameAs 2940197818 @default.
- W2940197818 citedByCount "9" @default.
- W2940197818 countsByYear W29401978182021 @default.
- W2940197818 countsByYear W29401978182022 @default.
- W2940197818 countsByYear W29401978182023 @default.
- W2940197818 crossrefType "journal-article" @default.
- W2940197818 hasAuthorship W2940197818A5021499143 @default.
- W2940197818 hasAuthorship W2940197818A5070072290 @default.
- W2940197818 hasConcept C107872376 @default.
- W2940197818 hasConcept C119857082 @default.
- W2940197818 hasConcept C127313418 @default.
- W2940197818 hasConcept C142796444 @default.
- W2940197818 hasConcept C150547873 @default.
- W2940197818 hasConcept C178790620 @default.
- W2940197818 hasConcept C185592680 @default.
- W2940197818 hasConcept C186699998 @default.
- W2940197818 hasConcept C187320778 @default.
- W2940197818 hasConcept C18903297 @default.
- W2940197818 hasConcept C24245907 @default.
- W2940197818 hasConcept C39432304 @default.
- W2940197818 hasConcept C41008148 @default.
- W2940197818 hasConcept C510538283 @default.
- W2940197818 hasConcept C68709404 @default.
- W2940197818 hasConcept C76886044 @default.
- W2940197818 hasConcept C86803240 @default.
- W2940197818 hasConceptScore W2940197818C107872376 @default.