Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940256836> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2940256836 abstract "Hyperspectral images (HSIs) are satellite images that provide spectral and spatial detail of a given region. This makes them uniquely suitable to classify objects in the scene. Classification of Hyperspectral images can be efficiently performed using the Convolutional Neural Network (CNN) in Machine Learning. In this research, a framework is proposed that leverages Transfer Learning and CNN to classify crop distributions of Horticulture Plantations. The Hyperspectral dataset consists of images and known labels, also known as groundtruth. However, some of the HSIs are unlabelled due to the lack of groundtruth available for the same. Hence, the proposed method adopts the Transfer Learning technique to overcome this. The model was trained on a publicly available and labelled hyperspectral dataset. This was then tested on the field samples of Chikkaballapur district of Karnataka, India which was provided by the Indian Space Research Organisation (ISRO). The CNN built leverages both the spectral and spatial correlations of the HSIs. Due to the amount of detail in HSIs, they are fed in as patches into the convolutional layers of the network. The diverse information provided by these images is exploited by deploying a three-dimensional kernel. This joint representation of both spectral and spatial information provides higher discriminating power, thus allowing a more accurate classification of the crop distributions in the field. The experimental results of this method prove that feeding images as patches trains the CNN better and applying Transfer Learning has a more generic and wider scope." @default.
- W2940256836 created "2019-04-25" @default.
- W2940256836 creator A5000982271 @default.
- W2940256836 creator A5035410114 @default.
- W2940256836 creator A5039154593 @default.
- W2940256836 creator A5060820715 @default.
- W2940256836 creator A5085315115 @default.
- W2940256836 date "2018-12-01" @default.
- W2940256836 modified "2023-10-16" @default.
- W2940256836 title "A Transfer Learning based CNN approach for Classification of Horticulture plantations using Hyperspectral Images" @default.
- W2940256836 cites W1980511770 @default.
- W2940256836 cites W2136251662 @default.
- W2940256836 cites W2138583748 @default.
- W2940256836 cites W2600061660 @default.
- W2940256836 cites W2658954079 @default.
- W2940256836 cites W2767651786 @default.
- W2940256836 cites W2768537477 @default.
- W2940256836 cites W2800691917 @default.
- W2940256836 cites W2963366243 @default.
- W2940256836 doi "https://doi.org/10.1109/iadcc.2018.8692142" @default.
- W2940256836 hasPublicationYear "2018" @default.
- W2940256836 type Work @default.
- W2940256836 sameAs 2940256836 @default.
- W2940256836 citedByCount "3" @default.
- W2940256836 countsByYear W29402568362020 @default.
- W2940256836 countsByYear W29402568362021 @default.
- W2940256836 crossrefType "proceedings-article" @default.
- W2940256836 hasAuthorship W2940256836A5000982271 @default.
- W2940256836 hasAuthorship W2940256836A5035410114 @default.
- W2940256836 hasAuthorship W2940256836A5039154593 @default.
- W2940256836 hasAuthorship W2940256836A5060820715 @default.
- W2940256836 hasAuthorship W2940256836A5085315115 @default.
- W2940256836 hasConcept C108583219 @default.
- W2940256836 hasConcept C114614502 @default.
- W2940256836 hasConcept C12267149 @default.
- W2940256836 hasConcept C150899416 @default.
- W2940256836 hasConcept C153180895 @default.
- W2940256836 hasConcept C154945302 @default.
- W2940256836 hasConcept C159078339 @default.
- W2940256836 hasConcept C159620131 @default.
- W2940256836 hasConcept C17744445 @default.
- W2940256836 hasConcept C199539241 @default.
- W2940256836 hasConcept C202444582 @default.
- W2940256836 hasConcept C205649164 @default.
- W2940256836 hasConcept C2776359362 @default.
- W2940256836 hasConcept C33923547 @default.
- W2940256836 hasConcept C41008148 @default.
- W2940256836 hasConcept C62649853 @default.
- W2940256836 hasConcept C74193536 @default.
- W2940256836 hasConcept C81363708 @default.
- W2940256836 hasConcept C94625758 @default.
- W2940256836 hasConcept C9652623 @default.
- W2940256836 hasConceptScore W2940256836C108583219 @default.
- W2940256836 hasConceptScore W2940256836C114614502 @default.
- W2940256836 hasConceptScore W2940256836C12267149 @default.
- W2940256836 hasConceptScore W2940256836C150899416 @default.
- W2940256836 hasConceptScore W2940256836C153180895 @default.
- W2940256836 hasConceptScore W2940256836C154945302 @default.
- W2940256836 hasConceptScore W2940256836C159078339 @default.
- W2940256836 hasConceptScore W2940256836C159620131 @default.
- W2940256836 hasConceptScore W2940256836C17744445 @default.
- W2940256836 hasConceptScore W2940256836C199539241 @default.
- W2940256836 hasConceptScore W2940256836C202444582 @default.
- W2940256836 hasConceptScore W2940256836C205649164 @default.
- W2940256836 hasConceptScore W2940256836C2776359362 @default.
- W2940256836 hasConceptScore W2940256836C33923547 @default.
- W2940256836 hasConceptScore W2940256836C41008148 @default.
- W2940256836 hasConceptScore W2940256836C62649853 @default.
- W2940256836 hasConceptScore W2940256836C74193536 @default.
- W2940256836 hasConceptScore W2940256836C81363708 @default.
- W2940256836 hasConceptScore W2940256836C94625758 @default.
- W2940256836 hasConceptScore W2940256836C9652623 @default.
- W2940256836 hasLocation W29402568361 @default.
- W2940256836 hasOpenAccess W2940256836 @default.
- W2940256836 hasPrimaryLocation W29402568361 @default.
- W2940256836 hasRelatedWork W2123450736 @default.
- W2940256836 hasRelatedWork W2614326984 @default.
- W2940256836 hasRelatedWork W2760944304 @default.
- W2940256836 hasRelatedWork W2767651786 @default.
- W2940256836 hasRelatedWork W2773120646 @default.
- W2940256836 hasRelatedWork W2807839383 @default.
- W2940256836 hasRelatedWork W2899401964 @default.
- W2940256836 hasRelatedWork W2943484762 @default.
- W2940256836 hasRelatedWork W2948043340 @default.
- W2940256836 hasRelatedWork W2980720988 @default.
- W2940256836 isParatext "false" @default.
- W2940256836 isRetracted "false" @default.
- W2940256836 magId "2940256836" @default.
- W2940256836 workType "article" @default.