Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940299710> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2940299710 endingPage "1714" @default.
- W2940299710 startingPage "1702" @default.
- W2940299710 abstract "The dramatic growth of mobile application usage has posed great pressure on application developers to better manage their backend capacity. Rule-based or schedule-based auto-scaling mechanisms have been proposed, but it is difficult or expensive to frequently adjust the backend capacity to track the burstiness of mobile traffic. In this paper, we explore a fundamentally different approach. Instead of scaling the backend in line with the mobile traffic, we smooth out traffic profiles to reduce the required backend capacity and increase its utilization. Our proposed solution, called Razor, is inspired by two key insights on mobile traffic. First, mobile traffic exhibits high short-term fluctuations but steady long-term trend, so that we may temporarily delay user requests and periodically adapt backend capacity based on the predicted traffic volume. Second, user requests have different priorities: while some requests are urgent (e.g., sending a message), some are delay-tolerant (e.g., changing the profile photo) and can be postponed without much influence on the user experience. Based on these observations, our design features a two-tier architecture: on a long timescale, Razor predicts future traffic using machine learning algorithms and plans the optimal backend capacity to minimize the budget with performance guarantee; on a short timescale, Razor schedules which requests to delay and by how much time to delay according to their delay tolerance. We implement a fully-functional prototype of Razor, and evaluate its performance with both real and synthetic traces. Extensive experimental results show that Razor can effectively help mobile application developers reduce their backend cost while guaranteeing the user experience." @default.
- W2940299710 created "2019-04-25" @default.
- W2940299710 creator A5011971882 @default.
- W2940299710 creator A5015275781 @default.
- W2940299710 creator A5083596391 @default.
- W2940299710 date "2020-07-01" @default.
- W2940299710 modified "2023-10-18" @default.
- W2940299710 title "Razor: Scaling Backend Capacity for Mobile Applications" @default.
- W2940299710 cites W1966715578 @default.
- W2940299710 cites W1970275772 @default.
- W2940299710 cites W1973943669 @default.
- W2940299710 cites W1974709883 @default.
- W2940299710 cites W1985037657 @default.
- W2940299710 cites W1991568948 @default.
- W2940299710 cites W2024195151 @default.
- W2940299710 cites W2025549137 @default.
- W2940299710 cites W2036785686 @default.
- W2940299710 cites W2088607870 @default.
- W2940299710 cites W2100779981 @default.
- W2940299710 cites W2109537757 @default.
- W2940299710 cites W2113912305 @default.
- W2940299710 cites W2119250334 @default.
- W2940299710 cites W2119438912 @default.
- W2940299710 cites W2125262761 @default.
- W2940299710 cites W2133132768 @default.
- W2940299710 cites W2134408282 @default.
- W2940299710 cites W2138772603 @default.
- W2940299710 cites W2150152686 @default.
- W2940299710 cites W2153657167 @default.
- W2940299710 cites W2162233318 @default.
- W2940299710 cites W2309679942 @default.
- W2940299710 cites W2606444872 @default.
- W2940299710 cites W304986642 @default.
- W2940299710 doi "https://doi.org/10.1109/tmc.2019.2911935" @default.
- W2940299710 hasPublicationYear "2020" @default.
- W2940299710 type Work @default.
- W2940299710 sameAs 2940299710 @default.
- W2940299710 citedByCount "1" @default.
- W2940299710 countsByYear W29402997102021 @default.
- W2940299710 crossrefType "journal-article" @default.
- W2940299710 hasAuthorship W2940299710A5011971882 @default.
- W2940299710 hasAuthorship W2940299710A5015275781 @default.
- W2940299710 hasAuthorship W2940299710A5083596391 @default.
- W2940299710 hasConcept C111919701 @default.
- W2940299710 hasConcept C120314980 @default.
- W2940299710 hasConcept C158379750 @default.
- W2940299710 hasConcept C186967261 @default.
- W2940299710 hasConcept C2781023610 @default.
- W2940299710 hasConcept C31258907 @default.
- W2940299710 hasConcept C41008148 @default.
- W2940299710 hasConcept C68387754 @default.
- W2940299710 hasConcept C79403827 @default.
- W2940299710 hasConceptScore W2940299710C111919701 @default.
- W2940299710 hasConceptScore W2940299710C120314980 @default.
- W2940299710 hasConceptScore W2940299710C158379750 @default.
- W2940299710 hasConceptScore W2940299710C186967261 @default.
- W2940299710 hasConceptScore W2940299710C2781023610 @default.
- W2940299710 hasConceptScore W2940299710C31258907 @default.
- W2940299710 hasConceptScore W2940299710C41008148 @default.
- W2940299710 hasConceptScore W2940299710C68387754 @default.
- W2940299710 hasConceptScore W2940299710C79403827 @default.
- W2940299710 hasFunder F4320321001 @default.
- W2940299710 hasFunder F4320324116 @default.
- W2940299710 hasIssue "7" @default.
- W2940299710 hasLocation W29402997101 @default.
- W2940299710 hasOpenAccess W2940299710 @default.
- W2940299710 hasPrimaryLocation W29402997101 @default.
- W2940299710 hasRelatedWork W1487010709 @default.
- W2940299710 hasRelatedWork W1972070263 @default.
- W2940299710 hasRelatedWork W1985477471 @default.
- W2940299710 hasRelatedWork W1991928096 @default.
- W2940299710 hasRelatedWork W2010997540 @default.
- W2940299710 hasRelatedWork W2130966263 @default.
- W2940299710 hasRelatedWork W2376852021 @default.
- W2940299710 hasRelatedWork W2387900022 @default.
- W2940299710 hasRelatedWork W2998813341 @default.
- W2940299710 hasRelatedWork W2029602998 @default.
- W2940299710 hasVolume "19" @default.
- W2940299710 isParatext "false" @default.
- W2940299710 isRetracted "false" @default.
- W2940299710 magId "2940299710" @default.
- W2940299710 workType "article" @default.