Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940346840> ?p ?o ?g. }
- W2940346840 abstract "Abstract Cleavage of Notch by the major intramembrane aspartyl protease complex γ-secretase is a central event in cell regulation and is also important to Alzheimer’s disease, with more than 200 mutations in the catalytic subunit of γ-secretase (PS1) causing severe early-onset forms of the disease. Recently, cryogenic electron microscopy (cryo-EM) has revealed the electron density of the protein-Notch complex in frozen solution, indicating major changes upon substrate binding and a possible helix unwinding to expose peptide bonds. In order understand the all-atom dynamics that cause this process, and to test the Notch binding in a membrane protein rather than solution, we developed an all-atom model of mature wild-type γ-secretase bound to Notch in a complete membrane-water system and studied the system using three independent 500-nanosecond molecular dynamics simulations. Our ensembles are in essential agreement with known cryo-EM data. As in previous simulations we find unusual β-strand transitions in exposed parts of PS1. We also observe the atomic helix motions that cause loss of helicity in bound Notch by direct comparison to corresponding 500 ns simulations of free Notch, in particular five residues to the N-terminal site of the primary cleavage site. Most importantly, we identify three conformation states, with two of them differing in the Notch-bound catalytic site. These dynamics produce a ping-pong relationship of positioning the S3 cleavage sites of Notch relative to the aspartates. These conformation states are not visible in the cryo-EM data; probably the density is an average snapshot of the two states. Our identified conformation states rationalize how Notch cleavage can be imprecise and yield multiple products. Our identified conformation states may aid efforts to develop conformation-selective drugs that target C99 and Notch cleavage differently. Statement of Significance The atomic dynamics underlying cleavage of Notch by γ-secretase in the membrane is of major biological importance. Electron microscopy has revealed the protein-Notch complex in frozen solution, showing major changes upon substrate binding and helix unwinding to expose peptide bonds, but does not explain why substrate cleavage is imprecise and produces several products. Our model of wild-type γ-secretase bound to Notch in a complete membrane-water system equilibrated by 3 × 500 nanoseconds of molecular dynamics strongly complements the electron microscopy data: We identify the specific loop and helix motions that cause the β-strand transitions in PS1 and the loss of helicity in specific residues of bound Notch. We identify different conformations of Notch, which importantly affect the S3 cleavage site; the open state may cause the imprecise cleavage with earlier release of products. Our identified states can aid development of conformation-selective drugs that target C99 and Notch cleavage differently." @default.
- W2940346840 created "2019-04-25" @default.
- W2940346840 creator A5076728587 @default.
- W2940346840 creator A5083834047 @default.
- W2940346840 creator A5084810235 @default.
- W2940346840 date "2019-04-12" @default.
- W2940346840 modified "2023-09-23" @default.
- W2940346840 title "Membrane dynamics of Notch-bound γ-secretase produces two distinct Notch conformations" @default.
- W2940346840 cites W1031578623 @default.
- W2940346840 cites W1480987708 @default.
- W2940346840 cites W1534001036 @default.
- W2940346840 cites W1585083630 @default.
- W2940346840 cites W187210528 @default.
- W2940346840 cites W1890431460 @default.
- W2940346840 cites W1964264655 @default.
- W2940346840 cites W1966694507 @default.
- W2940346840 cites W1978159078 @default.
- W2940346840 cites W1978330227 @default.
- W2940346840 cites W1978498560 @default.
- W2940346840 cites W1985307198 @default.
- W2940346840 cites W1985570437 @default.
- W2940346840 cites W1986443184 @default.
- W2940346840 cites W1989725189 @default.
- W2940346840 cites W1993773080 @default.
- W2940346840 cites W1997801717 @default.
- W2940346840 cites W2008041561 @default.
- W2940346840 cites W2012434595 @default.
- W2940346840 cites W2022772618 @default.
- W2940346840 cites W2029298729 @default.
- W2940346840 cites W2031055724 @default.
- W2940346840 cites W2035266068 @default.
- W2940346840 cites W2036681963 @default.
- W2940346840 cites W2036963269 @default.
- W2940346840 cites W2043325023 @default.
- W2940346840 cites W2044172327 @default.
- W2940346840 cites W2045153164 @default.
- W2940346840 cites W2050386832 @default.
- W2940346840 cites W2058905092 @default.
- W2940346840 cites W2059013803 @default.
- W2940346840 cites W2060807002 @default.
- W2940346840 cites W2066414494 @default.
- W2940346840 cites W2067174909 @default.
- W2940346840 cites W2081693079 @default.
- W2940346840 cites W2082868060 @default.
- W2940346840 cites W2083633251 @default.
- W2940346840 cites W2086324585 @default.
- W2940346840 cites W2089710618 @default.
- W2940346840 cites W2091913778 @default.
- W2940346840 cites W2095375670 @default.
- W2940346840 cites W2096410114 @default.
- W2940346840 cites W2104636742 @default.
- W2940346840 cites W2105216660 @default.
- W2940346840 cites W2106301585 @default.
- W2940346840 cites W2107704022 @default.
- W2940346840 cites W2118935254 @default.
- W2940346840 cites W2140831051 @default.
- W2940346840 cites W2144021643 @default.
- W2940346840 cites W2156542857 @default.
- W2940346840 cites W2160451368 @default.
- W2940346840 cites W2164215375 @default.
- W2940346840 cites W2165779834 @default.
- W2940346840 cites W2168087300 @default.
- W2940346840 cites W2168416013 @default.
- W2940346840 cites W2169488167 @default.
- W2940346840 cites W2178572083 @default.
- W2940346840 cites W2212671216 @default.
- W2940346840 cites W2232972230 @default.
- W2940346840 cites W2256286863 @default.
- W2940346840 cites W2313973094 @default.
- W2940346840 cites W2326435909 @default.
- W2940346840 cites W2329336071 @default.
- W2940346840 cites W2412487531 @default.
- W2940346840 cites W2439340751 @default.
- W2940346840 cites W2507723354 @default.
- W2940346840 cites W2508439858 @default.
- W2940346840 cites W2512798183 @default.
- W2940346840 cites W2521336036 @default.
- W2940346840 cites W2523729690 @default.
- W2940346840 cites W2555870966 @default.
- W2940346840 cites W2556479904 @default.
- W2940346840 cites W2572080171 @default.
- W2940346840 cites W2587074956 @default.
- W2940346840 cites W2606438863 @default.
- W2940346840 cites W2623998317 @default.
- W2940346840 cites W2744829308 @default.
- W2940346840 cites W2748672897 @default.
- W2940346840 cites W2749724221 @default.
- W2940346840 cites W2886504022 @default.
- W2940346840 cites W2896511009 @default.
- W2940346840 cites W2898713357 @default.
- W2940346840 cites W2900094348 @default.
- W2940346840 cites W2903517662 @default.
- W2940346840 cites W2904916971 @default.
- W2940346840 cites W2906337494 @default.
- W2940346840 cites W2912438090 @default.
- W2940346840 cites W3023013291 @default.
- W2940346840 cites W380069984 @default.
- W2940346840 cites W4231640017 @default.
- W2940346840 cites W4252175039 @default.
- W2940346840 doi "https://doi.org/10.1101/607846" @default.