Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940447751> ?p ?o ?g. }
- W2940447751 endingPage "1938" @default.
- W2940447751 startingPage "1928" @default.
- W2940447751 abstract "Although the first ferroelectric discovered in 1920 is Rochelle salt, a typical molecular ferroelectric, the front-runners that have been extensively studied and widely used in diverse applications, such as memory elements, capacitors, sensors, and actuators, are inorganic ferroelectrics with excellent electrical, mechanical, and optical properties. With the increased concerns about the environment, energy, and cost, molecular ferroelectrics are becoming promising supplements for inorganic ferroelectrics. The unique advantages of high structural tunability and homochirality, which are unavailable in their inorganic counterparts, make molecular systems a good platform for manipulating ferroelectricity. Remarkably, based on the Neumann's principle and the Curie symmetry principle defining the group-to-subgroup relationship, we have found some outstanding high-temperature molecular ferroelectrics, like diisopropylammonium bromide (DIPAB) with a large spontaneous polarization up to 23 μC/cm2 ( Fu, D. W.; et al. Science 2013 , 339 , 425 ). However, their application potential is severely limited by the uniaxial nature, leading to major issues in finding proper substrates for thin-film growth and achieving high thin-film performance. Inspired by the commercialized inorganic ferroelectrics like Pb(Zr, Ti)O3 (PZT), where the multiaxial nature contributes greatly to the optimized ferroelectric and piezoelectric performance, developing high-temperature multiaxial molecular ferroelectrics is an imminent task. In this Account, we review our recent research progress on the targeted design of multiaxial molecular ferroelectrics. We first propose the quasi-spherical theory, a phenomenological theory based on the Curie symmetry principle, to modify the spherical cations to a low-symmetric quasi-spherical geometry for acquiring the highly symmetric paraelectric phase and the polar ferroelectric phase of multiaxial ferroelectrics simultaneously. Besides the sizes and weights of the cation and anion, the intermolecular interactions are particularly crucial for decelerating the molecular rotation at low temperature to reasonably induce ferroelectricity. It means that the momentums of the cation and anion should be matched, so we describe the momentum matching theory. In particular, introducing homochirality, a superiority of molecular materials over the inorganic ones, was demonstrated as an effective approach to increase the incidence of ferroelectric crystal structures. Thanks to the striking chemical variability and structure-property flexibility of molecular materials, our research efforts outlined in this Account have led to and will further motivate the richness and the application exploration of high-temperature, high-performance multiaxial molecular ferroelectrics, along with the implementation and perfection of the targeted design strategies." @default.
- W2940447751 created "2019-04-25" @default.
- W2940447751 creator A5001000569 @default.
- W2940447751 creator A5021518912 @default.
- W2940447751 creator A5029746435 @default.
- W2940447751 creator A5058420477 @default.
- W2940447751 date "2019-04-15" @default.
- W2940447751 modified "2023-10-17" @default.
- W2940447751 title "Toward the Targeted Design of Molecular Ferroelectrics: Modifying Molecular Symmetries and Homochirality" @default.
- W2940447751 cites W1949665973 @default.
- W2940447751 cites W1982643031 @default.
- W2940447751 cites W1985596660 @default.
- W2940447751 cites W1991117550 @default.
- W2940447751 cites W2007345503 @default.
- W2940447751 cites W2007716054 @default.
- W2940447751 cites W2018246247 @default.
- W2940447751 cites W2037009864 @default.
- W2940447751 cites W2052896778 @default.
- W2940447751 cites W2086558592 @default.
- W2940447751 cites W2103614765 @default.
- W2940447751 cites W2105914745 @default.
- W2940447751 cites W2107327823 @default.
- W2940447751 cites W2230715130 @default.
- W2940447751 cites W2254766857 @default.
- W2940447751 cites W2333297357 @default.
- W2940447751 cites W2334797496 @default.
- W2940447751 cites W2527321611 @default.
- W2940447751 cites W2552597249 @default.
- W2940447751 cites W2553607247 @default.
- W2940447751 cites W2604259582 @default.
- W2940447751 cites W2606996551 @default.
- W2940447751 cites W2738790362 @default.
- W2940447751 cites W2739100290 @default.
- W2940447751 cites W2752001857 @default.
- W2940447751 cites W2770828043 @default.
- W2940447751 cites W2793718171 @default.
- W2940447751 cites W2884271876 @default.
- W2940447751 cites W2891820326 @default.
- W2940447751 cites W2920988521 @default.
- W2940447751 cites W2922308410 @default.
- W2940447751 cites W4246749317 @default.
- W2940447751 cites W4253606872 @default.
- W2940447751 doi "https://doi.org/10.1021/acs.accounts.8b00677" @default.
- W2940447751 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30986035" @default.
- W2940447751 hasPublicationYear "2019" @default.
- W2940447751 type Work @default.
- W2940447751 sameAs 2940447751 @default.
- W2940447751 citedByCount "229" @default.
- W2940447751 countsByYear W29404477512019 @default.
- W2940447751 countsByYear W29404477512020 @default.
- W2940447751 countsByYear W29404477512021 @default.
- W2940447751 countsByYear W29404477512022 @default.
- W2940447751 countsByYear W29404477512023 @default.
- W2940447751 crossrefType "journal-article" @default.
- W2940447751 hasAuthorship W2940447751A5001000569 @default.
- W2940447751 hasAuthorship W2940447751A5021518912 @default.
- W2940447751 hasAuthorship W2940447751A5029746435 @default.
- W2940447751 hasAuthorship W2940447751A5058420477 @default.
- W2940447751 hasConcept C100082104 @default.
- W2940447751 hasConcept C121332964 @default.
- W2940447751 hasConcept C123266903 @default.
- W2940447751 hasConcept C133386390 @default.
- W2940447751 hasConcept C146888428 @default.
- W2940447751 hasConcept C159985019 @default.
- W2940447751 hasConcept C171250308 @default.
- W2940447751 hasConcept C178790620 @default.
- W2940447751 hasConcept C185592680 @default.
- W2940447751 hasConcept C192562407 @default.
- W2940447751 hasConcept C26325048 @default.
- W2940447751 hasConcept C26873012 @default.
- W2940447751 hasConcept C2778070859 @default.
- W2940447751 hasConcept C486523 @default.
- W2940447751 hasConcept C49040817 @default.
- W2940447751 hasConcept C61696701 @default.
- W2940447751 hasConcept C63648874 @default.
- W2940447751 hasConcept C79090758 @default.
- W2940447751 hasConcept C82217956 @default.
- W2940447751 hasConceptScore W2940447751C100082104 @default.
- W2940447751 hasConceptScore W2940447751C121332964 @default.
- W2940447751 hasConceptScore W2940447751C123266903 @default.
- W2940447751 hasConceptScore W2940447751C133386390 @default.
- W2940447751 hasConceptScore W2940447751C146888428 @default.
- W2940447751 hasConceptScore W2940447751C159985019 @default.
- W2940447751 hasConceptScore W2940447751C171250308 @default.
- W2940447751 hasConceptScore W2940447751C178790620 @default.
- W2940447751 hasConceptScore W2940447751C185592680 @default.
- W2940447751 hasConceptScore W2940447751C192562407 @default.
- W2940447751 hasConceptScore W2940447751C26325048 @default.
- W2940447751 hasConceptScore W2940447751C26873012 @default.
- W2940447751 hasConceptScore W2940447751C2778070859 @default.
- W2940447751 hasConceptScore W2940447751C486523 @default.
- W2940447751 hasConceptScore W2940447751C49040817 @default.
- W2940447751 hasConceptScore W2940447751C61696701 @default.
- W2940447751 hasConceptScore W2940447751C63648874 @default.
- W2940447751 hasConceptScore W2940447751C79090758 @default.
- W2940447751 hasConceptScore W2940447751C82217956 @default.
- W2940447751 hasFunder F4320321001 @default.
- W2940447751 hasIssue "7" @default.