Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940525834> ?p ?o ?g. }
- W2940525834 endingPage "81" @default.
- W2940525834 startingPage "64" @default.
- W2940525834 abstract "Signal processing techniques are constantly expanding to accommodate a wider range of data structures and applications. A time series is a sequence of observations taken sequentially in time. Time-series analysis is concerned with techniques for the analysis of serial dependence and their use in practical applications, including 1) forecasting of future values from current and past values and 2) outlier detection and intervention analysis. Traditionally, time-series analysis has been applied to continuously varying data. However, in many areas of science and engineering we encounter count variables, i.e., variables that take on nonnegative integer values. Time series of counts are obtained in various disciplines whenever many events are counted during certain time periods. Examples include the monthly number of car accidents in a region, the weekly number of new cases in epidemiology, the number of transactions at a stock market per minute in finance, or the number of photon arrivals per microsecond in a focal-plane array. In some cases, the counts are large numbers and it makes sense to approximate them by continuous variables. However, there are many applications where the counts tend to be small and include many zeros. In this case, the observations cannot be adequately modeled with a continuous distribution. During the last three decades, there has been significant progress in the area of count time-series analysis [1], [2]. The main objective of this article is to present the state-of-the-art developments for modeling count time series in a signal processing framework by emphasizing the key theoretical, methodological, and practical application issues." @default.
- W2940525834 created "2019-05-03" @default.
- W2940525834 creator A5002090285 @default.
- W2940525834 creator A5047800576 @default.
- W2940525834 creator A5054442362 @default.
- W2940525834 date "2019-05-01" @default.
- W2940525834 modified "2023-10-14" @default.
- W2940525834 title "Count Time-Series Analysis: A Signal Processing Perspective" @default.
- W2940525834 cites W1086135 @default.
- W2940525834 cites W1528236908 @default.
- W2940525834 cites W1966264494 @default.
- W2940525834 cites W1973628995 @default.
- W2940525834 cites W1981944325 @default.
- W2940525834 cites W1983125795 @default.
- W2940525834 cites W1986486361 @default.
- W2940525834 cites W2022059524 @default.
- W2940525834 cites W2029388851 @default.
- W2940525834 cites W2032051534 @default.
- W2940525834 cites W2045737500 @default.
- W2940525834 cites W2047315330 @default.
- W2940525834 cites W2064758233 @default.
- W2940525834 cites W2084547601 @default.
- W2940525834 cites W2099726211 @default.
- W2940525834 cites W2101096071 @default.
- W2940525834 cites W2108196201 @default.
- W2940525834 cites W2112339981 @default.
- W2940525834 cites W2123906784 @default.
- W2940525834 cites W2127803921 @default.
- W2940525834 cites W2130715829 @default.
- W2940525834 cites W2153552426 @default.
- W2940525834 cites W2324057694 @default.
- W2940525834 cites W2329494830 @default.
- W2940525834 cites W2341516299 @default.
- W2940525834 cites W2396000217 @default.
- W2940525834 cites W2626732771 @default.
- W2940525834 cites W2731557133 @default.
- W2940525834 cites W2753666478 @default.
- W2940525834 cites W2776498136 @default.
- W2940525834 cites W2965856274 @default.
- W2940525834 cites W3124216392 @default.
- W2940525834 cites W4231057675 @default.
- W2940525834 cites W4234580748 @default.
- W2940525834 cites W4241983685 @default.
- W2940525834 cites W4255600897 @default.
- W2940525834 cites W4292963524 @default.
- W2940525834 cites W4301861531 @default.
- W2940525834 cites W4378764939 @default.
- W2940525834 cites W611855095 @default.
- W2940525834 doi "https://doi.org/10.1109/msp.2018.2885853" @default.
- W2940525834 hasPublicationYear "2019" @default.
- W2940525834 type Work @default.
- W2940525834 sameAs 2940525834 @default.
- W2940525834 citedByCount "9" @default.
- W2940525834 countsByYear W29405258342020 @default.
- W2940525834 countsByYear W29405258342021 @default.
- W2940525834 countsByYear W29405258342022 @default.
- W2940525834 countsByYear W29405258342023 @default.
- W2940525834 crossrefType "journal-article" @default.
- W2940525834 hasAuthorship W2940525834A5002090285 @default.
- W2940525834 hasAuthorship W2940525834A5047800576 @default.
- W2940525834 hasAuthorship W2940525834A5054442362 @default.
- W2940525834 hasConcept C100906024 @default.
- W2940525834 hasConcept C104267543 @default.
- W2940525834 hasConcept C105795698 @default.
- W2940525834 hasConcept C11413529 @default.
- W2940525834 hasConcept C119857082 @default.
- W2940525834 hasConcept C143724316 @default.
- W2940525834 hasConcept C151406439 @default.
- W2940525834 hasConcept C151730666 @default.
- W2940525834 hasConcept C154945302 @default.
- W2940525834 hasConcept C159985019 @default.
- W2940525834 hasConcept C192562407 @default.
- W2940525834 hasConcept C204323151 @default.
- W2940525834 hasConcept C33643355 @default.
- W2940525834 hasConcept C33923547 @default.
- W2940525834 hasConcept C41008148 @default.
- W2940525834 hasConcept C554190296 @default.
- W2940525834 hasConcept C76155785 @default.
- W2940525834 hasConcept C79337645 @default.
- W2940525834 hasConcept C86803240 @default.
- W2940525834 hasConceptScore W2940525834C100906024 @default.
- W2940525834 hasConceptScore W2940525834C104267543 @default.
- W2940525834 hasConceptScore W2940525834C105795698 @default.
- W2940525834 hasConceptScore W2940525834C11413529 @default.
- W2940525834 hasConceptScore W2940525834C119857082 @default.
- W2940525834 hasConceptScore W2940525834C143724316 @default.
- W2940525834 hasConceptScore W2940525834C151406439 @default.
- W2940525834 hasConceptScore W2940525834C151730666 @default.
- W2940525834 hasConceptScore W2940525834C154945302 @default.
- W2940525834 hasConceptScore W2940525834C159985019 @default.
- W2940525834 hasConceptScore W2940525834C192562407 @default.
- W2940525834 hasConceptScore W2940525834C204323151 @default.
- W2940525834 hasConceptScore W2940525834C33643355 @default.
- W2940525834 hasConceptScore W2940525834C33923547 @default.
- W2940525834 hasConceptScore W2940525834C41008148 @default.
- W2940525834 hasConceptScore W2940525834C554190296 @default.
- W2940525834 hasConceptScore W2940525834C76155785 @default.
- W2940525834 hasConceptScore W2940525834C79337645 @default.