Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940553617> ?p ?o ?g. }
- W2940553617 endingPage "84" @default.
- W2940553617 startingPage "79" @default.
- W2940553617 abstract "Sepsis remains a costly and prevalent syndrome in hospitals; however, machine learning systems can increase timely sepsis detection using electronic health records. This study validates a gradient boosted ensemble machine learning tool for sepsis detection and prediction, and compares its performance to existing methods.Retrospective data was drawn from databases at the University of California, San Francisco (UCSF) Medical Center and the Beth Israel Deaconess Medical Center (BIDMC). Adult patient encounters without sepsis on admission, and with at least one recording of each of six vital signs (SpO2, heart rate, respiratory rate, temperature, systolic and diastolic blood pressure) were included. We compared the performance of the machine learning algorithm (MLA) to that of commonly used scoring systems. Area under the receiver operating characteristic (AUROC) curve was our primary measure of accuracy. MLA performance was measured at sepsis onset, and at 24 and 48 h prior to sepsis onset.The MLA achieved an AUROC of 0.88, 0.84, and 0.83 for sepsis onset and 24 and 48 h prior to onset, respectively. These values were superior to those of SIRS (0.66), MEWS (0.61), SOFA (0.72), and qSOFA (0.60) at time of onset. When trained on UCSF data and tested on BIDMC data, sepsis onset AUROC was 0.89.The MLA predicts sepsis up to 48 h in advance and identifies sepsis onset more accurately than commonly used tools, maintaining high performance for sepsis detection when trained and tested on separate datasets." @default.
- W2940553617 created "2019-05-03" @default.
- W2940553617 creator A5008170811 @default.
- W2940553617 creator A5015715060 @default.
- W2940553617 creator A5017875867 @default.
- W2940553617 creator A5018209015 @default.
- W2940553617 creator A5046232417 @default.
- W2940553617 creator A5046247946 @default.
- W2940553617 creator A5054119515 @default.
- W2940553617 creator A5091233682 @default.
- W2940553617 date "2019-06-01" @default.
- W2940553617 modified "2023-10-06" @default.
- W2940553617 title "Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs" @default.
- W2940553617 cites W1898928487 @default.
- W2940553617 cites W1943063538 @default.
- W2940553617 cites W1970637339 @default.
- W2940553617 cites W1973857166 @default.
- W2940553617 cites W1980694603 @default.
- W2940553617 cites W2004512400 @default.
- W2940553617 cites W2010505320 @default.
- W2940553617 cites W2019952254 @default.
- W2940553617 cites W2031455305 @default.
- W2940553617 cites W2049927822 @default.
- W2940553617 cites W2082257894 @default.
- W2940553617 cites W2094915224 @default.
- W2940553617 cites W2097855313 @default.
- W2940553617 cites W2099376575 @default.
- W2940553617 cites W2106534536 @default.
- W2940553617 cites W2115441252 @default.
- W2940553617 cites W2133641948 @default.
- W2940553617 cites W2153014293 @default.
- W2940553617 cites W2280404143 @default.
- W2940553617 cites W2282181907 @default.
- W2940553617 cites W2346435289 @default.
- W2940553617 cites W2372800617 @default.
- W2940553617 cites W2396881363 @default.
- W2940553617 cites W2465673526 @default.
- W2940553617 cites W2523834880 @default.
- W2940553617 cites W2755492370 @default.
- W2940553617 cites W2762467200 @default.
- W2940553617 cites W2766207659 @default.
- W2940553617 cites W2768083064 @default.
- W2940553617 cites W2786635213 @default.
- W2940553617 cites W4231753770 @default.
- W2940553617 doi "https://doi.org/10.1016/j.compbiomed.2019.04.027" @default.
- W2940553617 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6556419" @default.
- W2940553617 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31035074" @default.
- W2940553617 hasPublicationYear "2019" @default.
- W2940553617 type Work @default.
- W2940553617 sameAs 2940553617 @default.
- W2940553617 citedByCount "86" @default.
- W2940553617 countsByYear W29405536172019 @default.
- W2940553617 countsByYear W29405536172020 @default.
- W2940553617 countsByYear W29405536172021 @default.
- W2940553617 countsByYear W29405536172022 @default.
- W2940553617 countsByYear W29405536172023 @default.
- W2940553617 crossrefType "journal-article" @default.
- W2940553617 hasAuthorship W2940553617A5008170811 @default.
- W2940553617 hasAuthorship W2940553617A5015715060 @default.
- W2940553617 hasAuthorship W2940553617A5017875867 @default.
- W2940553617 hasAuthorship W2940553617A5018209015 @default.
- W2940553617 hasAuthorship W2940553617A5046232417 @default.
- W2940553617 hasAuthorship W2940553617A5046247946 @default.
- W2940553617 hasAuthorship W2940553617A5054119515 @default.
- W2940553617 hasAuthorship W2940553617A5091233682 @default.
- W2940553617 hasBestOaLocation W29405536172 @default.
- W2940553617 hasConcept C119857082 @default.
- W2940553617 hasConcept C126322002 @default.
- W2940553617 hasConcept C141071460 @default.
- W2940553617 hasConcept C154945302 @default.
- W2940553617 hasConcept C160735492 @default.
- W2940553617 hasConcept C162324750 @default.
- W2940553617 hasConcept C194828623 @default.
- W2940553617 hasConcept C195910791 @default.
- W2940553617 hasConcept C2776890885 @default.
- W2940553617 hasConcept C2777671062 @default.
- W2940553617 hasConcept C2778358025 @default.
- W2940553617 hasConcept C2778384902 @default.
- W2940553617 hasConcept C2781090800 @default.
- W2940553617 hasConcept C3019952477 @default.
- W2940553617 hasConcept C41008148 @default.
- W2940553617 hasConcept C50522688 @default.
- W2940553617 hasConcept C58471807 @default.
- W2940553617 hasConcept C71924100 @default.
- W2940553617 hasConcept C84393581 @default.
- W2940553617 hasConceptScore W2940553617C119857082 @default.
- W2940553617 hasConceptScore W2940553617C126322002 @default.
- W2940553617 hasConceptScore W2940553617C141071460 @default.
- W2940553617 hasConceptScore W2940553617C154945302 @default.
- W2940553617 hasConceptScore W2940553617C160735492 @default.
- W2940553617 hasConceptScore W2940553617C162324750 @default.
- W2940553617 hasConceptScore W2940553617C194828623 @default.
- W2940553617 hasConceptScore W2940553617C195910791 @default.
- W2940553617 hasConceptScore W2940553617C2776890885 @default.
- W2940553617 hasConceptScore W2940553617C2777671062 @default.
- W2940553617 hasConceptScore W2940553617C2778358025 @default.
- W2940553617 hasConceptScore W2940553617C2778384902 @default.
- W2940553617 hasConceptScore W2940553617C2781090800 @default.