Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940554803> ?p ?o ?g. }
- W2940554803 endingPage "318" @default.
- W2940554803 startingPage "307" @default.
- W2940554803 abstract "This work introduces a smart differential protection scheme for a microgrid system using a nonlinear signal transformation named as ‘mathematical morphology (MM)’. Here, the mathematical morphology is used as a feature extraction technique. Thus, the three elementary MM filtering operators like erosion, dilation, and opening-closing-difference-filter (OCDF) are used to operate on the extracted phasor current signals and its symmetrical components for the extraction of differential feature vector. Further, the extracted feature vector is fed as an input to train and test two distinct extreme machine learning (ELM) classifiers meant for primary and backup protection. To justify and verify the better performance of the proposed method numerous fault and no-fault conditions are simulated by considering several operating conditions, such as topology of microgrid (radial/mesh) and mode of microgrid operation (islanding/grid-connecting). The experimental outcomes confirm the efficiency and reliability of the offered microgrid protection scheme (MPS) in diverse operating condition." @default.
- W2940554803 created "2019-05-03" @default.
- W2940554803 creator A5055143306 @default.
- W2940554803 creator A5081439630 @default.
- W2940554803 creator A5083141183 @default.
- W2940554803 date "2019-06-01" @default.
- W2940554803 modified "2023-10-01" @default.
- W2940554803 title "A combined mathematical morphology and extreme learning machine techniques based approach to micro-grid protection" @default.
- W2940554803 cites W1615274095 @default.
- W2940554803 cites W1995623135 @default.
- W2940554803 cites W2011879714 @default.
- W2940554803 cites W2018307545 @default.
- W2940554803 cites W2026131661 @default.
- W2940554803 cites W2054160369 @default.
- W2940554803 cites W2057864843 @default.
- W2940554803 cites W2068487893 @default.
- W2940554803 cites W2076018295 @default.
- W2940554803 cites W2098184227 @default.
- W2940554803 cites W2111072639 @default.
- W2940554803 cites W2120072243 @default.
- W2940554803 cites W2136425894 @default.
- W2940554803 cites W2141695047 @default.
- W2940554803 cites W2146842127 @default.
- W2940554803 cites W2162658653 @default.
- W2940554803 cites W2169820194 @default.
- W2940554803 cites W2177732305 @default.
- W2940554803 cites W2206617782 @default.
- W2940554803 cites W2306464438 @default.
- W2940554803 cites W2315509349 @default.
- W2940554803 cites W2327849618 @default.
- W2940554803 cites W2342568430 @default.
- W2940554803 cites W2346364699 @default.
- W2940554803 cites W2495872584 @default.
- W2940554803 cites W2506219324 @default.
- W2940554803 cites W2756270272 @default.
- W2940554803 cites W2789645342 @default.
- W2940554803 cites W2887598784 @default.
- W2940554803 cites W4230643092 @default.
- W2940554803 cites W4252728360 @default.
- W2940554803 doi "https://doi.org/10.1016/j.asej.2019.03.011" @default.
- W2940554803 hasPublicationYear "2019" @default.
- W2940554803 type Work @default.
- W2940554803 sameAs 2940554803 @default.
- W2940554803 citedByCount "34" @default.
- W2940554803 countsByYear W29405548032019 @default.
- W2940554803 countsByYear W29405548032020 @default.
- W2940554803 countsByYear W29405548032021 @default.
- W2940554803 countsByYear W29405548032022 @default.
- W2940554803 countsByYear W29405548032023 @default.
- W2940554803 crossrefType "journal-article" @default.
- W2940554803 hasAuthorship W2940554803A5055143306 @default.
- W2940554803 hasAuthorship W2940554803A5081439630 @default.
- W2940554803 hasAuthorship W2940554803A5083141183 @default.
- W2940554803 hasBestOaLocation W29405548031 @default.
- W2940554803 hasConcept C106131492 @default.
- W2940554803 hasConcept C115961682 @default.
- W2940554803 hasConcept C119599485 @default.
- W2940554803 hasConcept C121332964 @default.
- W2940554803 hasConcept C127313418 @default.
- W2940554803 hasConcept C127413603 @default.
- W2940554803 hasConcept C154945302 @default.
- W2940554803 hasConcept C163258240 @default.
- W2940554803 hasConcept C165205528 @default.
- W2940554803 hasConcept C165296897 @default.
- W2940554803 hasConcept C165801399 @default.
- W2940554803 hasConcept C175551986 @default.
- W2940554803 hasConcept C176605952 @default.
- W2940554803 hasConcept C185568154 @default.
- W2940554803 hasConcept C187691185 @default.
- W2940554803 hasConcept C188573790 @default.
- W2940554803 hasConcept C2524010 @default.
- W2940554803 hasConcept C2775924081 @default.
- W2940554803 hasConcept C2776784348 @default.
- W2940554803 hasConcept C2778675665 @default.
- W2940554803 hasConcept C2780150128 @default.
- W2940554803 hasConcept C2780945871 @default.
- W2940554803 hasConcept C31972630 @default.
- W2940554803 hasConcept C33923547 @default.
- W2940554803 hasConcept C41008148 @default.
- W2940554803 hasConcept C47446073 @default.
- W2940554803 hasConcept C50644808 @default.
- W2940554803 hasConcept C52622490 @default.
- W2940554803 hasConcept C544738498 @default.
- W2940554803 hasConcept C62520636 @default.
- W2940554803 hasConcept C66322947 @default.
- W2940554803 hasConcept C77088390 @default.
- W2940554803 hasConcept C83665646 @default.
- W2940554803 hasConcept C89227174 @default.
- W2940554803 hasConcept C9417928 @default.
- W2940554803 hasConceptScore W2940554803C106131492 @default.
- W2940554803 hasConceptScore W2940554803C115961682 @default.
- W2940554803 hasConceptScore W2940554803C119599485 @default.
- W2940554803 hasConceptScore W2940554803C121332964 @default.
- W2940554803 hasConceptScore W2940554803C127313418 @default.
- W2940554803 hasConceptScore W2940554803C127413603 @default.
- W2940554803 hasConceptScore W2940554803C154945302 @default.
- W2940554803 hasConceptScore W2940554803C163258240 @default.
- W2940554803 hasConceptScore W2940554803C165205528 @default.