Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940682483> ?p ?o ?g. }
- W2940682483 endingPage "6882" @default.
- W2940682483 startingPage "6872" @default.
- W2940682483 abstract "Novel high-resolution pressure-sensor arrays allow treating pressure readings as standard images. Computer vision algorithms and methods such as Convolutional Neural Networks (CNN) can be used to identify contact objects. In this paper, a high-resolution tactile sensor has been attached to a robotic end-effector to identify contacted objects. Two CNN-based approaches have been employed to classify pressure images. These methods include a transfer learning approach using a pre-trained CNN on an RGB-images dataset and a custom-made CNN (TactNet) trained from scratch with tactile information. The transfer learning approach can be carried out by retraining the classification layers of the network or replacing these layers with an SVM. Overall, 11 configurations based on these methods have been tested: 8 transfer learning-based, and 3 TactNet-based. Moreover, a study of the performance of the methods and a comparative discussion with the current state-of-the-art on tactile object recognition is presented." @default.
- W2940682483 created "2019-05-03" @default.
- W2940682483 creator A5023183689 @default.
- W2940682483 creator A5064921261 @default.
- W2940682483 creator A5087357177 @default.
- W2940682483 date "2019-08-15" @default.
- W2940682483 modified "2023-10-01" @default.
- W2940682483 title "CNN-Based Methods for Object Recognition With High-Resolution Tactile Sensors" @default.
- W2940682483 cites W1513599714 @default.
- W2940682483 cites W1581953684 @default.
- W2940682483 cites W1963215450 @default.
- W2940682483 cites W1965953026 @default.
- W2940682483 cites W1970495039 @default.
- W2940682483 cites W2005870597 @default.
- W2940682483 cites W2042599225 @default.
- W2940682483 cites W2064990398 @default.
- W2940682483 cites W2068882612 @default.
- W2940682483 cites W2100988994 @default.
- W2940682483 cites W2117539524 @default.
- W2940682483 cites W2138648596 @default.
- W2940682483 cites W2140434853 @default.
- W2940682483 cites W2144354855 @default.
- W2940682483 cites W2149606722 @default.
- W2940682483 cites W2158662820 @default.
- W2940682483 cites W2165698076 @default.
- W2940682483 cites W2171130677 @default.
- W2940682483 cites W2194775991 @default.
- W2940682483 cites W2209829030 @default.
- W2940682483 cites W2263753685 @default.
- W2940682483 cites W2312404746 @default.
- W2940682483 cites W2327594626 @default.
- W2940682483 cites W2328918242 @default.
- W2940682483 cites W2511197415 @default.
- W2940682483 cites W2529113322 @default.
- W2940682483 cites W2565843404 @default.
- W2940682483 cites W2566638765 @default.
- W2940682483 cites W2567050476 @default.
- W2940682483 cites W2735974022 @default.
- W2940682483 cites W2737661303 @default.
- W2940682483 cites W2742785019 @default.
- W2940682483 cites W2745797847 @default.
- W2940682483 cites W2748021903 @default.
- W2940682483 cites W2767443657 @default.
- W2940682483 cites W2768499207 @default.
- W2940682483 cites W2771406164 @default.
- W2940682483 cites W2774648911 @default.
- W2940682483 cites W2774992919 @default.
- W2940682483 cites W2781493652 @default.
- W2940682483 cites W2792044747 @default.
- W2940682483 cites W2804189514 @default.
- W2940682483 cites W2805264857 @default.
- W2940682483 cites W2812031262 @default.
- W2940682483 cites W2837391606 @default.
- W2940682483 cites W2883050039 @default.
- W2940682483 cites W2963015618 @default.
- W2940682483 cites W2963263790 @default.
- W2940682483 cites W2963654998 @default.
- W2940682483 doi "https://doi.org/10.1109/jsen.2019.2912968" @default.
- W2940682483 hasPublicationYear "2019" @default.
- W2940682483 type Work @default.
- W2940682483 sameAs 2940682483 @default.
- W2940682483 citedByCount "72" @default.
- W2940682483 countsByYear W29406824832019 @default.
- W2940682483 countsByYear W29406824832020 @default.
- W2940682483 countsByYear W29406824832021 @default.
- W2940682483 countsByYear W29406824832022 @default.
- W2940682483 countsByYear W29406824832023 @default.
- W2940682483 crossrefType "journal-article" @default.
- W2940682483 hasAuthorship W2940682483A5023183689 @default.
- W2940682483 hasAuthorship W2940682483A5064921261 @default.
- W2940682483 hasAuthorship W2940682483A5087357177 @default.
- W2940682483 hasBestOaLocation W29406824832 @default.
- W2940682483 hasConcept C12267149 @default.
- W2940682483 hasConcept C127413603 @default.
- W2940682483 hasConcept C150899416 @default.
- W2940682483 hasConcept C152086174 @default.
- W2940682483 hasConcept C153180895 @default.
- W2940682483 hasConcept C154945302 @default.
- W2940682483 hasConcept C2781238097 @default.
- W2940682483 hasConcept C31972630 @default.
- W2940682483 hasConcept C41008148 @default.
- W2940682483 hasConcept C41325743 @default.
- W2940682483 hasConcept C46722567 @default.
- W2940682483 hasConcept C64876066 @default.
- W2940682483 hasConcept C78519656 @default.
- W2940682483 hasConcept C81363708 @default.
- W2940682483 hasConcept C82990744 @default.
- W2940682483 hasConcept C90509273 @default.
- W2940682483 hasConceptScore W2940682483C12267149 @default.
- W2940682483 hasConceptScore W2940682483C127413603 @default.
- W2940682483 hasConceptScore W2940682483C150899416 @default.
- W2940682483 hasConceptScore W2940682483C152086174 @default.
- W2940682483 hasConceptScore W2940682483C153180895 @default.
- W2940682483 hasConceptScore W2940682483C154945302 @default.
- W2940682483 hasConceptScore W2940682483C2781238097 @default.
- W2940682483 hasConceptScore W2940682483C31972630 @default.
- W2940682483 hasConceptScore W2940682483C41008148 @default.
- W2940682483 hasConceptScore W2940682483C41325743 @default.