Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940691483> ?p ?o ?g. }
- W2940691483 endingPage "1" @default.
- W2940691483 startingPage "1" @default.
- W2940691483 abstract "The proliferation of various mobile devices equipped with cameras results in an exponential growth of the amount of images. Recent advances in the deep learning with convolutional neural networks (CNN) have made CNN feature extraction become an effective way to process these images. However, it is still a challenging task to deploy the CNN model on the mobile sensors, which are typically resource-constrained in terms of the storage space, the computing capacity, and the battery life. Although cloud computing has become a popular solution, data security and response latency are always the key issues. Therefore, in this paper, we propose a novel lightweight framework for privacy-preserving CNN feature extraction for mobile sensing based on edge computing. To get the most out of the benefits of CNN with limited physical resources on the mobile sensors, we design a series of secure interaction protocols and utilize two edge servers to collaboratively perform the CNN feature extraction. The proposed scheme allows us to significantly reduce the latency and the overhead of the end devices while preserving privacy. Through theoretical analysis and empirical experiments, we demonstrate the security, effectiveness, and efficiency of our scheme." @default.
- W2940691483 created "2019-05-03" @default.
- W2940691483 creator A5032623398 @default.
- W2940691483 creator A5032664581 @default.
- W2940691483 creator A5058120371 @default.
- W2940691483 creator A5081236959 @default.
- W2940691483 creator A5081952167 @default.
- W2940691483 date "2020-01-01" @default.
- W2940691483 modified "2023-10-16" @default.
- W2940691483 title "A Lightweight Privacy-Preserving CNN Feature Extraction Framework for Mobile Sensing" @default.
- W2940691483 cites W128527191 @default.
- W2940691483 cites W1458516385 @default.
- W2940691483 cites W1485800369 @default.
- W2940691483 cites W1499934958 @default.
- W2940691483 cites W1635361314 @default.
- W2940691483 cites W1912570122 @default.
- W2940691483 cites W1928483324 @default.
- W2940691483 cites W1973393984 @default.
- W2940691483 cites W1984680759 @default.
- W2940691483 cites W2003668524 @default.
- W2940691483 cites W2010126199 @default.
- W2940691483 cites W2063724771 @default.
- W2940691483 cites W2073532855 @default.
- W2940691483 cites W2089468229 @default.
- W2940691483 cites W2099221302 @default.
- W2940691483 cites W2130901615 @default.
- W2940691483 cites W2137351756 @default.
- W2940691483 cites W2141420453 @default.
- W2940691483 cites W2149745530 @default.
- W2940691483 cites W2155893237 @default.
- W2940691483 cites W2194775991 @default.
- W2940691483 cites W2317339301 @default.
- W2940691483 cites W2333627010 @default.
- W2940691483 cites W2398092817 @default.
- W2940691483 cites W2469486851 @default.
- W2940691483 cites W2473418344 @default.
- W2940691483 cites W2507088381 @default.
- W2940691483 cites W2508192500 @default.
- W2940691483 cites W2519072263 @default.
- W2940691483 cites W2520342609 @default.
- W2940691483 cites W2536058570 @default.
- W2940691483 cites W2585631449 @default.
- W2940691483 cites W2596492958 @default.
- W2940691483 cites W2614104334 @default.
- W2940691483 cites W2701059868 @default.
- W2940691483 cites W2704367133 @default.
- W2940691483 cites W2759586884 @default.
- W2940691483 cites W2765200655 @default.
- W2940691483 cites W2790376259 @default.
- W2940691483 cites W2801491268 @default.
- W2940691483 cites W2890595448 @default.
- W2940691483 cites W2895865029 @default.
- W2940691483 cites W2963106566 @default.
- W2940691483 cites W2963758027 @default.
- W2940691483 cites W2970097841 @default.
- W2940691483 cites W3141585064 @default.
- W2940691483 doi "https://doi.org/10.1109/tdsc.2019.2913362" @default.
- W2940691483 hasPublicationYear "2020" @default.
- W2940691483 type Work @default.
- W2940691483 sameAs 2940691483 @default.
- W2940691483 citedByCount "47" @default.
- W2940691483 countsByYear W29406914832019 @default.
- W2940691483 countsByYear W29406914832020 @default.
- W2940691483 countsByYear W29406914832021 @default.
- W2940691483 countsByYear W29406914832022 @default.
- W2940691483 countsByYear W29406914832023 @default.
- W2940691483 crossrefType "journal-article" @default.
- W2940691483 hasAuthorship W2940691483A5032623398 @default.
- W2940691483 hasAuthorship W2940691483A5032664581 @default.
- W2940691483 hasAuthorship W2940691483A5058120371 @default.
- W2940691483 hasAuthorship W2940691483A5081236959 @default.
- W2940691483 hasAuthorship W2940691483A5081952167 @default.
- W2940691483 hasBestOaLocation W29406914832 @default.
- W2940691483 hasConcept C108583219 @default.
- W2940691483 hasConcept C111919701 @default.
- W2940691483 hasConcept C144543869 @default.
- W2940691483 hasConcept C149635348 @default.
- W2940691483 hasConcept C154945302 @default.
- W2940691483 hasConcept C162307627 @default.
- W2940691483 hasConcept C186967261 @default.
- W2940691483 hasConcept C2776061582 @default.
- W2940691483 hasConcept C2778456923 @default.
- W2940691483 hasConcept C2779960059 @default.
- W2940691483 hasConcept C31258907 @default.
- W2940691483 hasConcept C41008148 @default.
- W2940691483 hasConcept C52622490 @default.
- W2940691483 hasConcept C76155785 @default.
- W2940691483 hasConcept C79974875 @default.
- W2940691483 hasConcept C81363708 @default.
- W2940691483 hasConcept C82876162 @default.
- W2940691483 hasConcept C93996380 @default.
- W2940691483 hasConceptScore W2940691483C108583219 @default.
- W2940691483 hasConceptScore W2940691483C111919701 @default.
- W2940691483 hasConceptScore W2940691483C144543869 @default.
- W2940691483 hasConceptScore W2940691483C149635348 @default.
- W2940691483 hasConceptScore W2940691483C154945302 @default.
- W2940691483 hasConceptScore W2940691483C162307627 @default.
- W2940691483 hasConceptScore W2940691483C186967261 @default.