Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940699110> ?p ?o ?g. }
- W2940699110 abstract "Background: The description of adherence based on medication refill histories relies on the estimation of continuous medication availability (CMA) during an observation period. Thresholds to distinguish adherence from non-adherence typically refer to an aggregated value across the entire observation period, disregarding differences in adherence over time that may have an impact on clinical outcomes. Sliding windows to divide the observation period into smaller portions, estimating adherence for these increments, and classify individuals with similar trajectories into clusters can retain this temporal information. Optimal methods to estimate longitudinal CMA (LCMA) and ideal parametrization of sliding windows to identify underlying patterns have not yet been established. This simulation study aimed to provide guidance for future studies by analyzing the effect of different LCMA estimates, sliding window parameters, and sample characteristics on the performance of a longitudinal clustering algorithm. Methods: We generated samples of 250-25,000 individuals with one of 6 longitudinal refill patterns over a 2-year period. We used two LCMA estimates (LCMA1 and LCMA2) and their dichotomized variants (with a threshold of 80%) to create adherence trajectories. LCMA1 assumes full adherence until the supply ends while LCMA2 assumes constant adherence between refills. We assessed scenarios with different LCMA estimates and sliding window parameters for 350 independent samples. Individual trajectories were clustered with kml, an implementation of k-means for longitudinal data in R. We compared performance between the 4 LCMA estimates using the adjusted Rand Index (cARI). Results: Cluster analysis with LCMA2 outperformed other estimates, irrespective of sliding window parameters, in overall performance, correct identification of groups, and classification accuracy. Pairwise comparison between LCMA estimates showed a relative cARI-advantage of 0.12 - 0.22 (p < 0.001) for LCMA2. Sample size did not affect overall performance. Conclusions: The choice of LCMA estimate and sliding window parameters has a major impact on the performance of a clustering algorithm to identify distinct longitudinal adherence trajectories. We recommend a) assuming constant adherence between refills, b) avoiding dichotomization based on a threshold, and c) exploring optimal sliding windows parameters in simulation studies or selecting shorter non-overlapping windows for the identification of different adherence patterns from medication refill data." @default.
- W2940699110 created "2019-05-03" @default.
- W2940699110 creator A5019421271 @default.
- W2940699110 creator A5046295051 @default.
- W2940699110 creator A5048694198 @default.
- W2940699110 date "2019-04-26" @default.
- W2940699110 modified "2023-10-17" @default.
- W2940699110 title "Beyond Adherence Thresholds: A Simulation Study of the Optimal Classification of Longitudinal Adherence Trajectories From Medication Refill Histories" @default.
- W2940699110 cites W1671127865 @default.
- W2940699110 cites W1741567663 @default.
- W2940699110 cites W1951842251 @default.
- W2940699110 cites W1975152892 @default.
- W2940699110 cites W1977556410 @default.
- W2940699110 cites W1988981069 @default.
- W2940699110 cites W1990856039 @default.
- W2940699110 cites W1997944093 @default.
- W2940699110 cites W2022070576 @default.
- W2940699110 cites W2041750354 @default.
- W2940699110 cites W2046321554 @default.
- W2940699110 cites W2059453639 @default.
- W2940699110 cites W2059944344 @default.
- W2940699110 cites W2065683696 @default.
- W2940699110 cites W2095967516 @default.
- W2940699110 cites W2096008069 @default.
- W2940699110 cites W2097139473 @default.
- W2940699110 cites W2102368961 @default.
- W2940699110 cites W2106019945 @default.
- W2940699110 cites W2108451834 @default.
- W2940699110 cites W2124742359 @default.
- W2940699110 cites W2125849039 @default.
- W2940699110 cites W2167609772 @default.
- W2940699110 cites W2202664117 @default.
- W2940699110 cites W2233425950 @default.
- W2940699110 cites W2252100302 @default.
- W2940699110 cites W2285902090 @default.
- W2940699110 cites W2321705146 @default.
- W2940699110 cites W2417877795 @default.
- W2940699110 cites W2548938834 @default.
- W2940699110 cites W2604581019 @default.
- W2940699110 cites W2617187937 @default.
- W2940699110 cites W2791781475 @default.
- W2940699110 cites W4235169531 @default.
- W2940699110 doi "https://doi.org/10.3389/fphar.2019.00383" @default.
- W2940699110 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6499004" @default.
- W2940699110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31105559" @default.
- W2940699110 hasPublicationYear "2019" @default.
- W2940699110 type Work @default.
- W2940699110 sameAs 2940699110 @default.
- W2940699110 citedByCount "12" @default.
- W2940699110 countsByYear W29406991102020 @default.
- W2940699110 countsByYear W29406991102021 @default.
- W2940699110 countsByYear W29406991102022 @default.
- W2940699110 countsByYear W29406991102023 @default.
- W2940699110 crossrefType "journal-article" @default.
- W2940699110 hasAuthorship W2940699110A5019421271 @default.
- W2940699110 hasAuthorship W2940699110A5046295051 @default.
- W2940699110 hasAuthorship W2940699110A5048694198 @default.
- W2940699110 hasBestOaLocation W29406991101 @default.
- W2940699110 hasConcept C102392041 @default.
- W2940699110 hasConcept C105795698 @default.
- W2940699110 hasConcept C111919701 @default.
- W2940699110 hasConcept C124101348 @default.
- W2940699110 hasConcept C149782125 @default.
- W2940699110 hasConcept C164866538 @default.
- W2940699110 hasConcept C199360897 @default.
- W2940699110 hasConcept C2777895361 @default.
- W2940699110 hasConcept C2778751112 @default.
- W2940699110 hasConcept C3020672099 @default.
- W2940699110 hasConcept C33923547 @default.
- W2940699110 hasConcept C41008148 @default.
- W2940699110 hasConcept C71924100 @default.
- W2940699110 hasConcept C73555534 @default.
- W2940699110 hasConceptScore W2940699110C102392041 @default.
- W2940699110 hasConceptScore W2940699110C105795698 @default.
- W2940699110 hasConceptScore W2940699110C111919701 @default.
- W2940699110 hasConceptScore W2940699110C124101348 @default.
- W2940699110 hasConceptScore W2940699110C149782125 @default.
- W2940699110 hasConceptScore W2940699110C164866538 @default.
- W2940699110 hasConceptScore W2940699110C199360897 @default.
- W2940699110 hasConceptScore W2940699110C2777895361 @default.
- W2940699110 hasConceptScore W2940699110C2778751112 @default.
- W2940699110 hasConceptScore W2940699110C3020672099 @default.
- W2940699110 hasConceptScore W2940699110C33923547 @default.
- W2940699110 hasConceptScore W2940699110C41008148 @default.
- W2940699110 hasConceptScore W2940699110C71924100 @default.
- W2940699110 hasConceptScore W2940699110C73555534 @default.
- W2940699110 hasLocation W29406991101 @default.
- W2940699110 hasLocation W29406991102 @default.
- W2940699110 hasLocation W29406991103 @default.
- W2940699110 hasLocation W29406991104 @default.
- W2940699110 hasLocation W29406991105 @default.
- W2940699110 hasOpenAccess W2940699110 @default.
- W2940699110 hasPrimaryLocation W29406991101 @default.
- W2940699110 hasRelatedWork W1546488782 @default.
- W2940699110 hasRelatedWork W2035435174 @default.
- W2940699110 hasRelatedWork W2111142662 @default.
- W2940699110 hasRelatedWork W2160448378 @default.
- W2940699110 hasRelatedWork W2381286523 @default.
- W2940699110 hasRelatedWork W2902397990 @default.
- W2940699110 hasRelatedWork W3014558862 @default.