Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940703721> ?p ?o ?g. }
- W2940703721 endingPage "320" @default.
- W2940703721 startingPage "308" @default.
- W2940703721 abstract "Bayesian network (BN) has been widely used in modeling expert knowledge and reasoning in many application domains, due to its power of representing probabilistic knowledge over a set of interacting variables under significant uncertain. However, the actual construction of a Bayesian network model for a domain remains to be a challenging task since it involves learning the causal structure and the conditional probability table of BN variables from experts, and/or observational data. In this paper, we explore the unique challenge of applying Bayesian network to model how public safety officials represent and reason about threats of evolving mass protest. Anticipating threats of mass protests is crucial for choosing proper intervention strategies, but it is also inherently difficult because a large number of interacting factors contribute to the dynamics of protests with high uncertainty and contingency. In constructing the BN model for this complex domain, we found that traditional methods of discovering BN structure either from data or experts are inadequate, due to the scarcity of data and the highly stochastic nature of mass protest events. Instead, we proposed a hybrid approach (called “ISM-K2”) which enhances the BN structure learning methods (K2 algorithm) by expert knowledge elicited using the ISM (interpretive structural model) method. We show that the BN model constructed using ISM-K2 approach is superior than three other base-line models (the logistic regression model, the BN constructed only by expert knowledge from ISM, and the BN constructed only by data learning). Finally, we show the potential of using our BN threat assessment model for supporting practical policing decisions." @default.
- W2940703721 created "2019-05-03" @default.
- W2940703721 creator A5007089544 @default.
- W2940703721 creator A5069617930 @default.
- W2940703721 creator A5072017344 @default.
- W2940703721 creator A5073139296 @default.
- W2940703721 date "2019-10-01" @default.
- W2940703721 modified "2023-10-15" @default.
- W2940703721 title "A hybrid approach for identifying the structure of a Bayesian network model" @default.
- W2940703721 cites W1517993545 @default.
- W2940703721 cites W1817561967 @default.
- W2940703721 cites W1914125733 @default.
- W2940703721 cites W1967411964 @default.
- W2940703721 cites W1975916892 @default.
- W2940703721 cites W1980841949 @default.
- W2940703721 cites W1985026895 @default.
- W2940703721 cites W1999835727 @default.
- W2940703721 cites W2007367842 @default.
- W2940703721 cites W2048076161 @default.
- W2940703721 cites W2052017965 @default.
- W2940703721 cites W2056336673 @default.
- W2940703721 cites W2058150410 @default.
- W2940703721 cites W2062918211 @default.
- W2940703721 cites W2073760588 @default.
- W2940703721 cites W2075448131 @default.
- W2940703721 cites W2083515005 @default.
- W2940703721 cites W2098173733 @default.
- W2940703721 cites W2100863490 @default.
- W2940703721 cites W2103044398 @default.
- W2940703721 cites W2116586921 @default.
- W2940703721 cites W2116981799 @default.
- W2940703721 cites W2124817397 @default.
- W2940703721 cites W2127625042 @default.
- W2940703721 cites W2133943399 @default.
- W2940703721 cites W2138890315 @default.
- W2940703721 cites W2145480231 @default.
- W2940703721 cites W2149047800 @default.
- W2940703721 cites W2149405308 @default.
- W2940703721 cites W2152293902 @default.
- W2940703721 cites W2158698691 @default.
- W2940703721 cites W2169782562 @default.
- W2940703721 cites W2171807981 @default.
- W2940703721 cites W2305402217 @default.
- W2940703721 cites W2316285999 @default.
- W2940703721 cites W2320686570 @default.
- W2940703721 cites W2403438230 @default.
- W2940703721 cites W2470050080 @default.
- W2940703721 cites W2505123321 @default.
- W2940703721 cites W2539054576 @default.
- W2940703721 cites W2560486644 @default.
- W2940703721 cites W2588204302 @default.
- W2940703721 cites W4230917753 @default.
- W2940703721 cites W4236354166 @default.
- W2940703721 doi "https://doi.org/10.1016/j.eswa.2019.04.060" @default.
- W2940703721 hasPublicationYear "2019" @default.
- W2940703721 type Work @default.
- W2940703721 sameAs 2940703721 @default.
- W2940703721 citedByCount "29" @default.
- W2940703721 countsByYear W29407037212019 @default.
- W2940703721 countsByYear W29407037212020 @default.
- W2940703721 countsByYear W29407037212021 @default.
- W2940703721 countsByYear W29407037212022 @default.
- W2940703721 countsByYear W29407037212023 @default.
- W2940703721 crossrefType "journal-article" @default.
- W2940703721 hasAuthorship W2940703721A5007089544 @default.
- W2940703721 hasAuthorship W2940703721A5069617930 @default.
- W2940703721 hasAuthorship W2940703721A5072017344 @default.
- W2940703721 hasAuthorship W2940703721A5073139296 @default.
- W2940703721 hasBestOaLocation W29407037211 @default.
- W2940703721 hasConcept C107673813 @default.
- W2940703721 hasConcept C119857082 @default.
- W2940703721 hasConcept C134306372 @default.
- W2940703721 hasConcept C154945302 @default.
- W2940703721 hasConcept C207685749 @default.
- W2940703721 hasConcept C33724603 @default.
- W2940703721 hasConcept C33923547 @default.
- W2940703721 hasConcept C36503486 @default.
- W2940703721 hasConcept C41008148 @default.
- W2940703721 hasConcept C49937458 @default.
- W2940703721 hasConceptScore W2940703721C107673813 @default.
- W2940703721 hasConceptScore W2940703721C119857082 @default.
- W2940703721 hasConceptScore W2940703721C134306372 @default.
- W2940703721 hasConceptScore W2940703721C154945302 @default.
- W2940703721 hasConceptScore W2940703721C207685749 @default.
- W2940703721 hasConceptScore W2940703721C33724603 @default.
- W2940703721 hasConceptScore W2940703721C33923547 @default.
- W2940703721 hasConceptScore W2940703721C36503486 @default.
- W2940703721 hasConceptScore W2940703721C41008148 @default.
- W2940703721 hasConceptScore W2940703721C49937458 @default.
- W2940703721 hasFunder F4320306076 @default.
- W2940703721 hasFunder F4320321001 @default.
- W2940703721 hasFunder F4320321408 @default.
- W2940703721 hasFunder F4320321540 @default.
- W2940703721 hasFunder F4320322725 @default.
- W2940703721 hasLocation W29407037211 @default.
- W2940703721 hasOpenAccess W2940703721 @default.
- W2940703721 hasPrimaryLocation W29407037211 @default.
- W2940703721 hasRelatedWork W1519462607 @default.