Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940748235> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2940748235 endingPage "40" @default.
- W2940748235 startingPage "29" @default.
- W2940748235 abstract "Driven by advancements in technology, tight-gas field development has become a significant source of hydrocarbon to the energy industry. The amount of data generated in the process is immense as most platforms are now being digitized. Machine learning tools can be used to analyse this data in order to build patterns between several dependent and independent variables. Forecasting initial gas production rates has important implications in the planning production/processing facilities for new wells, affects investment decisions and is an important component of reporting to regulatory agencies. This study is based on the analysis of reservoir rock/fluid properties and selected well parameters to build decision-based models that can predict initial gas production rates for tight gas formations. In this study, two machine learning predictive models; Artificial Neural Network (ANN) and Generalized Linear Model (GLM), were used to determine the expected recovery rate of planned new wells. Production data was retrieved from 224 wells and used in developing the model. The results obtained from these models were then compared to the actual recorded initial gas production rate from the wells. Results from the analysis carried out revealed a Mean Square Error (MSE) of 1.57 on a GLM model whereas the ANN model gave an MSE of 1.24. Key Performance Index for the ANN model revealed that reservoir thickness had the highest (36.5%) contribution to the initial gas production rate followed by the flowback rate (29%). The reservoir/fluid properties contribution to the initial gas production rate was 53% while the hydraulic fracture parameters contribution to the initial gas production rate was 47%." @default.
- W2940748235 created "2019-05-03" @default.
- W2940748235 creator A5009620667 @default.
- W2940748235 creator A5012330210 @default.
- W2940748235 creator A5036311369 @default.
- W2940748235 creator A5038710715 @default.
- W2940748235 date "2019-01-01" @default.
- W2940748235 modified "2023-10-18" @default.
- W2940748235 title "Application of machine learning models in predicting initial gas production rate from tight gas reservoirs" @default.
- W2940748235 cites W1838191093 @default.
- W2940748235 cites W2322684925 @default.
- W2940748235 cites W2665178585 @default.
- W2940748235 cites W1989398372 @default.
- W2940748235 doi "https://doi.org/10.17794/rgn.2019.3.4" @default.
- W2940748235 hasPublicationYear "2019" @default.
- W2940748235 type Work @default.
- W2940748235 sameAs 2940748235 @default.
- W2940748235 citedByCount "3" @default.
- W2940748235 countsByYear W29407482352022 @default.
- W2940748235 countsByYear W29407482352023 @default.
- W2940748235 crossrefType "journal-article" @default.
- W2940748235 hasAuthorship W2940748235A5009620667 @default.
- W2940748235 hasAuthorship W2940748235A5012330210 @default.
- W2940748235 hasAuthorship W2940748235A5036311369 @default.
- W2940748235 hasAuthorship W2940748235A5038710715 @default.
- W2940748235 hasBestOaLocation W29407482351 @default.
- W2940748235 hasConcept C105795698 @default.
- W2940748235 hasConcept C119857082 @default.
- W2940748235 hasConcept C127313418 @default.
- W2940748235 hasConcept C139719470 @default.
- W2940748235 hasConcept C139945424 @default.
- W2940748235 hasConcept C149782125 @default.
- W2940748235 hasConcept C162324750 @default.
- W2940748235 hasConcept C2777447996 @default.
- W2940748235 hasConcept C2778348673 @default.
- W2940748235 hasConcept C2779096232 @default.
- W2940748235 hasConcept C33923547 @default.
- W2940748235 hasConcept C39432304 @default.
- W2940748235 hasConcept C41008148 @default.
- W2940748235 hasConcept C45804977 @default.
- W2940748235 hasConcept C50644808 @default.
- W2940748235 hasConcept C78762247 @default.
- W2940748235 hasConceptScore W2940748235C105795698 @default.
- W2940748235 hasConceptScore W2940748235C119857082 @default.
- W2940748235 hasConceptScore W2940748235C127313418 @default.
- W2940748235 hasConceptScore W2940748235C139719470 @default.
- W2940748235 hasConceptScore W2940748235C139945424 @default.
- W2940748235 hasConceptScore W2940748235C149782125 @default.
- W2940748235 hasConceptScore W2940748235C162324750 @default.
- W2940748235 hasConceptScore W2940748235C2777447996 @default.
- W2940748235 hasConceptScore W2940748235C2778348673 @default.
- W2940748235 hasConceptScore W2940748235C2779096232 @default.
- W2940748235 hasConceptScore W2940748235C33923547 @default.
- W2940748235 hasConceptScore W2940748235C39432304 @default.
- W2940748235 hasConceptScore W2940748235C41008148 @default.
- W2940748235 hasConceptScore W2940748235C45804977 @default.
- W2940748235 hasConceptScore W2940748235C50644808 @default.
- W2940748235 hasConceptScore W2940748235C78762247 @default.
- W2940748235 hasIssue "3" @default.
- W2940748235 hasLocation W29407482351 @default.
- W2940748235 hasLocation W29407482352 @default.
- W2940748235 hasLocation W29407482353 @default.
- W2940748235 hasLocation W29407482354 @default.
- W2940748235 hasOpenAccess W2940748235 @default.
- W2940748235 hasPrimaryLocation W29407482351 @default.
- W2940748235 hasRelatedWork W2102148524 @default.
- W2940748235 hasRelatedWork W2314720829 @default.
- W2940748235 hasRelatedWork W2368828816 @default.
- W2940748235 hasRelatedWork W2383785121 @default.
- W2940748235 hasRelatedWork W2560286063 @default.
- W2940748235 hasRelatedWork W2752727226 @default.
- W2940748235 hasRelatedWork W2910905786 @default.
- W2940748235 hasRelatedWork W3137312914 @default.
- W2940748235 hasRelatedWork W3202693875 @default.
- W2940748235 hasRelatedWork W4386715265 @default.
- W2940748235 hasVolume "34" @default.
- W2940748235 isParatext "false" @default.
- W2940748235 isRetracted "false" @default.
- W2940748235 magId "2940748235" @default.
- W2940748235 workType "article" @default.