Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940785943> ?p ?o ?g. }
- W2940785943 endingPage "7037" @default.
- W2940785943 startingPage "7025" @default.
- W2940785943 abstract "Unmanned aerial vehicle (UAV) communication is a promising technology for Internet of Things (IoT) systems. In this paper, we combine UAV communication and nonorthogonal multiple access (NOMA) for constructing high capacity IoT uplink transmission systems, where UAVs are used as aerial base stations for collecting data from IoT nodes while NOMA is invoked for uplink transmission. We aim to maximize the system capacity by jointly optimize the subchannel assignment, the uplink transmit power of IoT nodes, and the flying heights of UAVs. We commence by proposing an efficient subchannel assignment algorithm relying on the classic K-means clustering method and matching theory. Then, we determine both the distributed uplink transmit power of IoT nodes and flying heights of UAVs based on successive optimization approach. An alternative optimization algorithm is also proposed for finding the near-optimal solutions. Finally, the numerical results demonstrate the superiority of our proposed scheme." @default.
- W2940785943 created "2019-05-03" @default.
- W2940785943 creator A5002346706 @default.
- W2940785943 creator A5005072193 @default.
- W2940785943 creator A5067221645 @default.
- W2940785943 creator A5070377168 @default.
- W2940785943 creator A5073527013 @default.
- W2940785943 creator A5087518768 @default.
- W2940785943 date "2019-08-01" @default.
- W2940785943 modified "2023-10-17" @default.
- W2940785943 title "Resource Allocation for Multi-UAV Aided IoT NOMA Uplink Transmission Systems" @default.
- W2940785943 cites W1922937245 @default.
- W2940785943 cites W1958281780 @default.
- W2940785943 cites W1969552822 @default.
- W2940785943 cites W1969648546 @default.
- W2940785943 cites W1990643970 @default.
- W2940785943 cites W2027563534 @default.
- W2940785943 cites W2031834036 @default.
- W2940785943 cites W2085486577 @default.
- W2940785943 cites W2105103777 @default.
- W2940785943 cites W2150957592 @default.
- W2940785943 cites W2268751503 @default.
- W2940785943 cites W2277419020 @default.
- W2940785943 cites W2289204537 @default.
- W2940785943 cites W2327622231 @default.
- W2940785943 cites W2412503523 @default.
- W2940785943 cites W2496222037 @default.
- W2940785943 cites W2507748565 @default.
- W2940785943 cites W2515756451 @default.
- W2940785943 cites W2522615148 @default.
- W2940785943 cites W2558431499 @default.
- W2940785943 cites W2604830243 @default.
- W2940785943 cites W2741178546 @default.
- W2940785943 cites W2767105570 @default.
- W2940785943 cites W2785633818 @default.
- W2940785943 cites W2896977747 @default.
- W2940785943 cites W2907417129 @default.
- W2940785943 cites W2913340256 @default.
- W2940785943 cites W2921642927 @default.
- W2940785943 cites W2962733038 @default.
- W2940785943 cites W2962804513 @default.
- W2940785943 cites W2963061782 @default.
- W2940785943 cites W2963562791 @default.
- W2940785943 cites W3098405735 @default.
- W2940785943 cites W3099378150 @default.
- W2940785943 cites W3100992968 @default.
- W2940785943 cites W4250589301 @default.
- W2940785943 doi "https://doi.org/10.1109/jiot.2019.2913473" @default.
- W2940785943 hasPublicationYear "2019" @default.
- W2940785943 type Work @default.
- W2940785943 sameAs 2940785943 @default.
- W2940785943 citedByCount "138" @default.
- W2940785943 countsByYear W29407859432019 @default.
- W2940785943 countsByYear W29407859432020 @default.
- W2940785943 countsByYear W29407859432021 @default.
- W2940785943 countsByYear W29407859432022 @default.
- W2940785943 countsByYear W29407859432023 @default.
- W2940785943 crossrefType "journal-article" @default.
- W2940785943 hasAuthorship W2940785943A5002346706 @default.
- W2940785943 hasAuthorship W2940785943A5005072193 @default.
- W2940785943 hasAuthorship W2940785943A5067221645 @default.
- W2940785943 hasAuthorship W2940785943A5070377168 @default.
- W2940785943 hasAuthorship W2940785943A5073527013 @default.
- W2940785943 hasAuthorship W2940785943A5087518768 @default.
- W2940785943 hasConcept C119857082 @default.
- W2940785943 hasConcept C120314980 @default.
- W2940785943 hasConcept C127162648 @default.
- W2940785943 hasConcept C138660444 @default.
- W2940785943 hasConcept C149635348 @default.
- W2940785943 hasConcept C2775918612 @default.
- W2940785943 hasConcept C2780609101 @default.
- W2940785943 hasConcept C29202148 @default.
- W2940785943 hasConcept C31258907 @default.
- W2940785943 hasConcept C41008148 @default.
- W2940785943 hasConcept C47798520 @default.
- W2940785943 hasConcept C65422117 @default.
- W2940785943 hasConcept C68649174 @default.
- W2940785943 hasConcept C73555534 @default.
- W2940785943 hasConcept C761482 @default.
- W2940785943 hasConcept C76155785 @default.
- W2940785943 hasConcept C79403827 @default.
- W2940785943 hasConcept C81860439 @default.
- W2940785943 hasConceptScore W2940785943C119857082 @default.
- W2940785943 hasConceptScore W2940785943C120314980 @default.
- W2940785943 hasConceptScore W2940785943C127162648 @default.
- W2940785943 hasConceptScore W2940785943C138660444 @default.
- W2940785943 hasConceptScore W2940785943C149635348 @default.
- W2940785943 hasConceptScore W2940785943C2775918612 @default.
- W2940785943 hasConceptScore W2940785943C2780609101 @default.
- W2940785943 hasConceptScore W2940785943C29202148 @default.
- W2940785943 hasConceptScore W2940785943C31258907 @default.
- W2940785943 hasConceptScore W2940785943C41008148 @default.
- W2940785943 hasConceptScore W2940785943C47798520 @default.
- W2940785943 hasConceptScore W2940785943C65422117 @default.
- W2940785943 hasConceptScore W2940785943C68649174 @default.
- W2940785943 hasConceptScore W2940785943C73555534 @default.
- W2940785943 hasConceptScore W2940785943C761482 @default.
- W2940785943 hasConceptScore W2940785943C76155785 @default.