Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940805846> ?p ?o ?g. }
- W2940805846 abstract "Deep convolutional neural networks perform better on images containing spatially invariant noise (synthetic noise); however, their performance is limited on real-noisy photographs and requires multiple stage network modeling. To advance the practicability of denoising algorithms, this paper proposes a novel single-stage blind real image denoising network (RIDNet) by employing a modular architecture. We use a residual on the residual structure to ease the flow of low-frequency information and apply feature attention to exploit the channel dependencies. Furthermore, the evaluation in terms of quantitative metrics and visual quality on three synthetic and four real noisy datasets against 19 state-of-the-art algorithms demonstrate the superiority of our RIDNet." @default.
- W2940805846 created "2019-05-03" @default.
- W2940805846 creator A5072837153 @default.
- W2940805846 creator A5084633048 @default.
- W2940805846 date "2019-04-16" @default.
- W2940805846 modified "2023-10-18" @default.
- W2940805846 title "Real Image Denoising with Feature Attention" @default.
- W2940805846 cites W1485262465 @default.
- W2940805846 cites W1514535095 @default.
- W2940805846 cites W1522301498 @default.
- W2940805846 cites W1906770428 @default.
- W2940805846 cites W1980414590 @default.
- W2940805846 cites W1993205988 @default.
- W2940805846 cites W2017132642 @default.
- W2940805846 cites W2021347102 @default.
- W2940805846 cites W2025328853 @default.
- W2940805846 cites W2037133587 @default.
- W2940805846 cites W2037642501 @default.
- W2940805846 cites W2045079989 @default.
- W2940805846 cites W2047710600 @default.
- W2940805846 cites W2048695508 @default.
- W2940805846 cites W2056370875 @default.
- W2940805846 cites W2058005980 @default.
- W2940805846 cites W2097073572 @default.
- W2940805846 cites W2097713019 @default.
- W2940805846 cites W2100705753 @default.
- W2940805846 cites W2117787067 @default.
- W2940805846 cites W2121927366 @default.
- W2940805846 cites W2135065661 @default.
- W2940805846 cites W2172275395 @default.
- W2940805846 cites W2203654268 @default.
- W2940805846 cites W2317084172 @default.
- W2940805846 cites W2469031810 @default.
- W2940805846 cites W2507211415 @default.
- W2940805846 cites W2536599074 @default.
- W2940805846 cites W2550616896 @default.
- W2940805846 cites W2551161082 @default.
- W2940805846 cites W2573726823 @default.
- W2940805846 cites W2613155248 @default.
- W2940805846 cites W2618839904 @default.
- W2940805846 cites W2727642811 @default.
- W2940805846 cites W2740494144 @default.
- W2940805846 cites W2741137940 @default.
- W2940805846 cites W2752782242 @default.
- W2940805846 cites W2771208044 @default.
- W2940805846 cites W2795722336 @default.
- W2940805846 cites W2799192307 @default.
- W2940805846 cites W2899771611 @default.
- W2940805846 cites W2949650786 @default.
- W2940805846 cites W2950116990 @default.
- W2940805846 cites W2952982376 @default.
- W2940805846 hasPublicationYear "2019" @default.
- W2940805846 type Work @default.
- W2940805846 sameAs 2940805846 @default.
- W2940805846 citedByCount "9" @default.
- W2940805846 countsByYear W29408058462019 @default.
- W2940805846 countsByYear W29408058462020 @default.
- W2940805846 crossrefType "posted-content" @default.
- W2940805846 hasAuthorship W2940805846A5072837153 @default.
- W2940805846 hasAuthorship W2940805846A5084633048 @default.
- W2940805846 hasConcept C101468663 @default.
- W2940805846 hasConcept C111919701 @default.
- W2940805846 hasConcept C11413529 @default.
- W2940805846 hasConcept C115961682 @default.
- W2940805846 hasConcept C138885662 @default.
- W2940805846 hasConcept C153180895 @default.
- W2940805846 hasConcept C154945302 @default.
- W2940805846 hasConcept C155512373 @default.
- W2940805846 hasConcept C163294075 @default.
- W2940805846 hasConcept C165696696 @default.
- W2940805846 hasConcept C190470478 @default.
- W2940805846 hasConcept C2776401178 @default.
- W2940805846 hasConcept C31972630 @default.
- W2940805846 hasConcept C33923547 @default.
- W2940805846 hasConcept C37914503 @default.
- W2940805846 hasConcept C38652104 @default.
- W2940805846 hasConcept C41008148 @default.
- W2940805846 hasConcept C41895202 @default.
- W2940805846 hasConcept C81363708 @default.
- W2940805846 hasConcept C99498987 @default.
- W2940805846 hasConceptScore W2940805846C101468663 @default.
- W2940805846 hasConceptScore W2940805846C111919701 @default.
- W2940805846 hasConceptScore W2940805846C11413529 @default.
- W2940805846 hasConceptScore W2940805846C115961682 @default.
- W2940805846 hasConceptScore W2940805846C138885662 @default.
- W2940805846 hasConceptScore W2940805846C153180895 @default.
- W2940805846 hasConceptScore W2940805846C154945302 @default.
- W2940805846 hasConceptScore W2940805846C155512373 @default.
- W2940805846 hasConceptScore W2940805846C163294075 @default.
- W2940805846 hasConceptScore W2940805846C165696696 @default.
- W2940805846 hasConceptScore W2940805846C190470478 @default.
- W2940805846 hasConceptScore W2940805846C2776401178 @default.
- W2940805846 hasConceptScore W2940805846C31972630 @default.
- W2940805846 hasConceptScore W2940805846C33923547 @default.
- W2940805846 hasConceptScore W2940805846C37914503 @default.
- W2940805846 hasConceptScore W2940805846C38652104 @default.
- W2940805846 hasConceptScore W2940805846C41008148 @default.
- W2940805846 hasConceptScore W2940805846C41895202 @default.
- W2940805846 hasConceptScore W2940805846C81363708 @default.
- W2940805846 hasConceptScore W2940805846C99498987 @default.