Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940807868> ?p ?o ?g. }
- W2940807868 endingPage "141" @default.
- W2940807868 startingPage "131" @default.
- W2940807868 abstract "Land Use Regression (LUR) models of Volatile Organic Compounds (VOC) normally focus on land use (e.g., industrial area) or transportation facilities (e.g., roadway); here, we incorporate area sources (e.g., gas stations) from city permitting data and Google Point of Interest (POI) data to compare model performance. We used measurements from 50 community-based sampling locations (2013–2015) in Minneapolis, MN, USA to develop LUR models for 60 VOCs. We used three sets of independent variables: (1) base-case models with land use and transportation variables, (2) models that add area source variables from local business permit data, and (3) models that use Google POI data for area sources. The models with Google POI data performed best; for example, the total VOC (TVOC) model has better goodness-of-fit (adj-R2: 0.56; Root Mean Square Error [RMSE]: 0.32 μg/m3) as compared to the permit data model (0.42; 0.37) and the base-case model (0.26; 0.41). Area source variables were selected in over two thirds of models among the 60 VOCs at small-scale buffer sizes (e.g., 25 m–500 m). Our work suggests that VOC LUR models can be developed using community-based sampling and that models improve by including area sources as measured by business permit and Google POI data." @default.
- W2940807868 created "2019-05-03" @default.
- W2940807868 creator A5032517344 @default.
- W2940807868 creator A5035331464 @default.
- W2940807868 creator A5052588320 @default.
- W2940807868 creator A5067659683 @default.
- W2940807868 creator A5086266020 @default.
- W2940807868 date "2019-08-01" @default.
- W2940807868 modified "2023-10-01" @default.
- W2940807868 title "Land Use Regression models for 60 volatile organic compounds: Comparing Google Point of Interest (POI) and city permit data" @default.
- W2940807868 cites W1963738994 @default.
- W2940807868 cites W1966313220 @default.
- W2940807868 cites W1971662834 @default.
- W2940807868 cites W1985529169 @default.
- W2940807868 cites W1987166356 @default.
- W2940807868 cites W1987568761 @default.
- W2940807868 cites W1991781618 @default.
- W2940807868 cites W1994332628 @default.
- W2940807868 cites W1995587747 @default.
- W2940807868 cites W2001278163 @default.
- W2940807868 cites W2002685456 @default.
- W2940807868 cites W2006702126 @default.
- W2940807868 cites W2009598717 @default.
- W2940807868 cites W2018347765 @default.
- W2940807868 cites W2022241658 @default.
- W2940807868 cites W2022377930 @default.
- W2940807868 cites W2024510125 @default.
- W2940807868 cites W2031986017 @default.
- W2940807868 cites W2035403317 @default.
- W2940807868 cites W2035813223 @default.
- W2940807868 cites W2044083327 @default.
- W2940807868 cites W2047419226 @default.
- W2940807868 cites W2050343952 @default.
- W2940807868 cites W2051045477 @default.
- W2940807868 cites W2052334083 @default.
- W2940807868 cites W2053178744 @default.
- W2940807868 cites W2065947772 @default.
- W2940807868 cites W2069640186 @default.
- W2940807868 cites W2076166095 @default.
- W2940807868 cites W2077191941 @default.
- W2940807868 cites W2079229232 @default.
- W2940807868 cites W2079964055 @default.
- W2940807868 cites W2088693254 @default.
- W2940807868 cites W2092884693 @default.
- W2940807868 cites W2094927284 @default.
- W2940807868 cites W2095744130 @default.
- W2940807868 cites W2095924213 @default.
- W2940807868 cites W2098637521 @default.
- W2940807868 cites W2105207535 @default.
- W2940807868 cites W2110430688 @default.
- W2940807868 cites W2118898434 @default.
- W2940807868 cites W2119783885 @default.
- W2940807868 cites W2131808303 @default.
- W2940807868 cites W2152608856 @default.
- W2940807868 cites W2153641546 @default.
- W2940807868 cites W2173985014 @default.
- W2940807868 cites W2256161737 @default.
- W2940807868 cites W2394863005 @default.
- W2940807868 cites W2434823106 @default.
- W2940807868 cites W245302769 @default.
- W2940807868 cites W2461291864 @default.
- W2940807868 cites W2512083134 @default.
- W2940807868 cites W2607295148 @default.
- W2940807868 cites W2731751404 @default.
- W2940807868 cites W2763706741 @default.
- W2940807868 cites W2769465898 @default.
- W2940807868 cites W805829592 @default.
- W2940807868 doi "https://doi.org/10.1016/j.scitotenv.2019.04.285" @default.
- W2940807868 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31054441" @default.
- W2940807868 hasPublicationYear "2019" @default.
- W2940807868 type Work @default.
- W2940807868 sameAs 2940807868 @default.
- W2940807868 citedByCount "14" @default.
- W2940807868 countsByYear W29408078682020 @default.
- W2940807868 countsByYear W29408078682021 @default.
- W2940807868 countsByYear W29408078682022 @default.
- W2940807868 countsByYear W29408078682023 @default.
- W2940807868 crossrefType "journal-article" @default.
- W2940807868 hasAuthorship W2940807868A5032517344 @default.
- W2940807868 hasAuthorship W2940807868A5035331464 @default.
- W2940807868 hasAuthorship W2940807868A5052588320 @default.
- W2940807868 hasAuthorship W2940807868A5067659683 @default.
- W2940807868 hasAuthorship W2940807868A5086266020 @default.
- W2940807868 hasBestOaLocation W29408078681 @default.
- W2940807868 hasConcept C105795698 @default.
- W2940807868 hasConcept C106131492 @default.
- W2940807868 hasConcept C139945424 @default.
- W2940807868 hasConcept C140779682 @default.
- W2940807868 hasConcept C150140777 @default.
- W2940807868 hasConcept C152877465 @default.
- W2940807868 hasConcept C154945302 @default.
- W2940807868 hasConcept C31972630 @default.
- W2940807868 hasConcept C33923547 @default.
- W2940807868 hasConcept C39432304 @default.
- W2940807868 hasConcept C41008148 @default.
- W2940807868 hasConceptScore W2940807868C105795698 @default.
- W2940807868 hasConceptScore W2940807868C106131492 @default.
- W2940807868 hasConceptScore W2940807868C139945424 @default.