Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940897106> ?p ?o ?g. }
- W2940897106 endingPage "482" @default.
- W2940897106 startingPage "472" @default.
- W2940897106 abstract "Abstract Studies of adverse human health effects due to exposures to particles with an aerodynamic diameter smaller than 2.5 μm (PM2.5) are often limited by sparse ground in situ measurements. Satellite remote sensing technique provides an effective tool for PM2.5 assessment in areas where surface PM2.5 monitoring network is not available. The MODIS aerosol optical depth (AOD) with spatial resolution of 10 km has been widely used in retrieving PM2.5 concentrations in a large scale, but it is insufficient for city-scale PM2.5 studies. In this study, we used the newly released AOD product with higher resolution of 3 km incorporating meteorological fields from Goddard Earth Observing System-Forward Processing (GEOS-FP) and road density for ground-level PM2.5 estimation in Fuzhou, i.e. a coastal city of China. A two-stage statistical model combing linear mixed effects model (LME) and support vector regression model (SVR) was proposed in this study, and a 10-fold cross validation approach was employed for model validation. We obtained an overall R2 of 0.81, root mean square error (RMSE) of 8.83 μg/m3 in model fitting, and R2 of 0.77, RMSE of 9.51 μg/m3 in model validation. The retrieved PM2.5 presented a spatial pattern with high concentrations in urban areas and low values in suburban or mountainous areas. We also found that the spatial distribution of PM2.5 concentrations showed a very strong correlation with the terrain features, forest cover, road density, and industrial pollution sources. The results revealed that the combined LME-SVR model using 3 km AOD along with GEOS-FP field and road density could achieve high accuracy in PM2.5 estimation, and would be helpful for air quality monitoring in Fuzhou." @default.
- W2940897106 created "2019-05-03" @default.
- W2940897106 creator A5019726896 @default.
- W2940897106 creator A5051639270 @default.
- W2940897106 creator A5088570979 @default.
- W2940897106 date "2019-08-01" @default.
- W2940897106 modified "2023-09-25" @default.
- W2940897106 title "Estimating ground-level PM2.5 over a coastal region of China using satellite AOD and a combined model" @default.
- W2940897106 cites W1173523477 @default.
- W2940897106 cites W1967297182 @default.
- W2940897106 cites W1970486901 @default.
- W2940897106 cites W2008103634 @default.
- W2940897106 cites W2011740524 @default.
- W2940897106 cites W2027409234 @default.
- W2940897106 cites W2031528200 @default.
- W2940897106 cites W2053581743 @default.
- W2940897106 cites W2054806977 @default.
- W2940897106 cites W2066281540 @default.
- W2940897106 cites W2069389213 @default.
- W2940897106 cites W2069977802 @default.
- W2940897106 cites W2083944525 @default.
- W2940897106 cites W2090436332 @default.
- W2940897106 cites W2092953734 @default.
- W2940897106 cites W2108162680 @default.
- W2940897106 cites W2110673467 @default.
- W2940897106 cites W2119362352 @default.
- W2940897106 cites W2161669929 @default.
- W2940897106 cites W2233873426 @default.
- W2940897106 cites W2252305884 @default.
- W2940897106 cites W2301552301 @default.
- W2940897106 cites W2310114729 @default.
- W2940897106 cites W2312602772 @default.
- W2940897106 cites W2472277974 @default.
- W2940897106 cites W2523199838 @default.
- W2940897106 cites W2526273574 @default.
- W2940897106 cites W2605745243 @default.
- W2940897106 cites W2742946820 @default.
- W2940897106 cites W2768079009 @default.
- W2940897106 cites W2770900290 @default.
- W2940897106 cites W2776069591 @default.
- W2940897106 cites W2794260655 @default.
- W2940897106 cites W2811009165 @default.
- W2940897106 cites W2804462539 @default.
- W2940897106 doi "https://doi.org/10.1016/j.jclepro.2019.04.231" @default.
- W2940897106 hasPublicationYear "2019" @default.
- W2940897106 type Work @default.
- W2940897106 sameAs 2940897106 @default.
- W2940897106 citedByCount "37" @default.
- W2940897106 countsByYear W29408971062019 @default.
- W2940897106 countsByYear W29408971062020 @default.
- W2940897106 countsByYear W29408971062021 @default.
- W2940897106 countsByYear W29408971062022 @default.
- W2940897106 countsByYear W29408971062023 @default.
- W2940897106 crossrefType "journal-article" @default.
- W2940897106 hasAuthorship W2940897106A5019726896 @default.
- W2940897106 hasAuthorship W2940897106A5051639270 @default.
- W2940897106 hasAuthorship W2940897106A5088570979 @default.
- W2940897106 hasConcept C127313418 @default.
- W2940897106 hasConcept C127413603 @default.
- W2940897106 hasConcept C146978453 @default.
- W2940897106 hasConcept C147176958 @default.
- W2940897106 hasConcept C153294291 @default.
- W2940897106 hasConcept C166957645 @default.
- W2940897106 hasConcept C191935318 @default.
- W2940897106 hasConcept C19269812 @default.
- W2940897106 hasConcept C205649164 @default.
- W2940897106 hasConcept C2992074223 @default.
- W2940897106 hasConcept C3017984891 @default.
- W2940897106 hasConcept C39432304 @default.
- W2940897106 hasConcept C49204034 @default.
- W2940897106 hasConcept C62649853 @default.
- W2940897106 hasConceptScore W2940897106C127313418 @default.
- W2940897106 hasConceptScore W2940897106C127413603 @default.
- W2940897106 hasConceptScore W2940897106C146978453 @default.
- W2940897106 hasConceptScore W2940897106C147176958 @default.
- W2940897106 hasConceptScore W2940897106C153294291 @default.
- W2940897106 hasConceptScore W2940897106C166957645 @default.
- W2940897106 hasConceptScore W2940897106C191935318 @default.
- W2940897106 hasConceptScore W2940897106C19269812 @default.
- W2940897106 hasConceptScore W2940897106C205649164 @default.
- W2940897106 hasConceptScore W2940897106C2992074223 @default.
- W2940897106 hasConceptScore W2940897106C3017984891 @default.
- W2940897106 hasConceptScore W2940897106C39432304 @default.
- W2940897106 hasConceptScore W2940897106C49204034 @default.
- W2940897106 hasConceptScore W2940897106C62649853 @default.
- W2940897106 hasLocation W29408971061 @default.
- W2940897106 hasOpenAccess W2940897106 @default.
- W2940897106 hasPrimaryLocation W29408971061 @default.
- W2940897106 hasRelatedWork W1618102658 @default.
- W2940897106 hasRelatedWork W178304858 @default.
- W2940897106 hasRelatedWork W1974250593 @default.
- W2940897106 hasRelatedWork W2013329914 @default.
- W2940897106 hasRelatedWork W2018057559 @default.
- W2940897106 hasRelatedWork W2048609183 @default.
- W2940897106 hasRelatedWork W2085322521 @default.
- W2940897106 hasRelatedWork W2087960652 @default.
- W2940897106 hasRelatedWork W2278949842 @default.
- W2940897106 hasRelatedWork W2392383081 @default.