Matches in SemOpenAlex for { <https://semopenalex.org/work/W2940948712> ?p ?o ?g. }
- W2940948712 abstract "We address talker-independent monaural speaker separation from the perspectives of deep learning and computational auditory scene analysis (CASA). Specifically, we decompose the multi-speaker separation task into the stages of simultaneous grouping and sequential grouping. Simultaneous grouping is first performed in each time frame by separating the spectra of different speakers with a permutation-invariantly trained neural network. In the second stage, the frame-level separated spectra are sequentially grouped to different speakers by a clustering network. The proposed deep CASA approach optimizes frame-level separation and speaker tracking in turn, and produces excellent results for both objectives. Experimental results on the benchmark WSJ0-2mix database show that the new approach achieves the state-of-the-art results with a modest model size." @default.
- W2940948712 created "2019-05-03" @default.
- W2940948712 creator A5051837453 @default.
- W2940948712 creator A5058713341 @default.
- W2940948712 date "2019-04-24" @default.
- W2940948712 modified "2023-09-24" @default.
- W2940948712 title "Divide and Conquer: A Deep CASA Approach to Talker-independent Monaural Speaker Separation" @default.
- W2940948712 cites W1482149378 @default.
- W2940948712 cites W1575829986 @default.
- W2940948712 cites W1677182931 @default.
- W2940948712 cites W1901129140 @default.
- W2940948712 cites W1904365287 @default.
- W2940948712 cites W1991112797 @default.
- W2940948712 cites W2031647436 @default.
- W2940948712 cites W2069681747 @default.
- W2940948712 cites W2087368178 @default.
- W2940948712 cites W2088361146 @default.
- W2940948712 cites W2127851351 @default.
- W2940948712 cites W2221409856 @default.
- W2940948712 cites W2291877678 @default.
- W2940948712 cites W2300605907 @default.
- W2940948712 cites W2304609584 @default.
- W2940948712 cites W2510642588 @default.
- W2940948712 cites W2516001803 @default.
- W2940948712 cites W2531409750 @default.
- W2940948712 cites W2561557072 @default.
- W2940948712 cites W2622055663 @default.
- W2940948712 cites W2734774145 @default.
- W2940948712 cites W2743945814 @default.
- W2940948712 cites W2774707525 @default.
- W2940948712 cites W2792764867 @default.
- W2940948712 cites W2800022361 @default.
- W2940948712 cites W2890111732 @default.
- W2940948712 cites W2891405874 @default.
- W2940948712 cites W2892365986 @default.
- W2940948712 cites W2900834497 @default.
- W2940948712 cites W2910254446 @default.
- W2940948712 cites W2937484199 @default.
- W2940948712 cites W2952218014 @default.
- W2940948712 cites W2962905190 @default.
- W2940948712 cites W2963266340 @default.
- W2940948712 cites W2963285578 @default.
- W2940948712 cites W2963446712 @default.
- W2940948712 cites W2963750251 @default.
- W2940948712 cites W2964121744 @default.
- W2940948712 cites W2996969697 @default.
- W2940948712 doi "https://doi.org/10.48550/arxiv.1904.11148" @default.
- W2940948712 hasPublicationYear "2019" @default.
- W2940948712 type Work @default.
- W2940948712 sameAs 2940948712 @default.
- W2940948712 citedByCount "3" @default.
- W2940948712 countsByYear W29409487122019 @default.
- W2940948712 countsByYear W29409487122020 @default.
- W2940948712 countsByYear W29409487122021 @default.
- W2940948712 crossrefType "posted-content" @default.
- W2940948712 hasAuthorship W2940948712A5051837453 @default.
- W2940948712 hasAuthorship W2940948712A5058713341 @default.
- W2940948712 hasBestOaLocation W29409487121 @default.
- W2940948712 hasConcept C102894143 @default.
- W2940948712 hasConcept C119857082 @default.
- W2940948712 hasConcept C121332964 @default.
- W2940948712 hasConcept C126042441 @default.
- W2940948712 hasConcept C127413603 @default.
- W2940948712 hasConcept C13280743 @default.
- W2940948712 hasConcept C133892786 @default.
- W2940948712 hasConcept C149838564 @default.
- W2940948712 hasConcept C153180895 @default.
- W2940948712 hasConcept C154945302 @default.
- W2940948712 hasConcept C185798385 @default.
- W2940948712 hasConcept C201995342 @default.
- W2940948712 hasConcept C205649164 @default.
- W2940948712 hasConcept C21308566 @default.
- W2940948712 hasConcept C24890656 @default.
- W2940948712 hasConcept C2776061190 @default.
- W2940948712 hasConcept C2776864781 @default.
- W2940948712 hasConcept C2780451532 @default.
- W2940948712 hasConcept C28490314 @default.
- W2940948712 hasConcept C41008148 @default.
- W2940948712 hasConcept C50644808 @default.
- W2940948712 hasConcept C73208851 @default.
- W2940948712 hasConcept C73555534 @default.
- W2940948712 hasConcept C76155785 @default.
- W2940948712 hasConceptScore W2940948712C102894143 @default.
- W2940948712 hasConceptScore W2940948712C119857082 @default.
- W2940948712 hasConceptScore W2940948712C121332964 @default.
- W2940948712 hasConceptScore W2940948712C126042441 @default.
- W2940948712 hasConceptScore W2940948712C127413603 @default.
- W2940948712 hasConceptScore W2940948712C13280743 @default.
- W2940948712 hasConceptScore W2940948712C133892786 @default.
- W2940948712 hasConceptScore W2940948712C149838564 @default.
- W2940948712 hasConceptScore W2940948712C153180895 @default.
- W2940948712 hasConceptScore W2940948712C154945302 @default.
- W2940948712 hasConceptScore W2940948712C185798385 @default.
- W2940948712 hasConceptScore W2940948712C201995342 @default.
- W2940948712 hasConceptScore W2940948712C205649164 @default.
- W2940948712 hasConceptScore W2940948712C21308566 @default.
- W2940948712 hasConceptScore W2940948712C24890656 @default.
- W2940948712 hasConceptScore W2940948712C2776061190 @default.
- W2940948712 hasConceptScore W2940948712C2776864781 @default.
- W2940948712 hasConceptScore W2940948712C2780451532 @default.