Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941056772> ?p ?o ?g. }
- W2941056772 endingPage "e0215720" @default.
- W2941056772 startingPage "e0215720" @default.
- W2941056772 abstract "Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that has heavy consequences on a child’s wellbeing, especially in the academic, psychological and relational planes. The current evaluation of the disorder is supported by clinical assessment and written tests. A definitive diagnosis is usually made based on the DSM-V criteria. There is a lot of ongoing research on ADHD, in order to determine the neurophysiological basis of the disorder and to reach a more objective diagnosis. The advent of Machine Learning (ML) opens up promising prospects for the development of systems able to predict a diagnosis from phenotypic and neuroimaging data. This was the reason why the ADHD-200 contest was launched a few years ago. Based on the publicly available ADHD-200 collection, participants were challenged to predict ADHD with the best possible predictive accuracy. In the present work, we propose instead a ML methodology which primarily places importance on the explanatory power of a model. Such an approach is intended to achieve a fair trade-off between the needs of performance and interpretability expected from medical diagnosis aid systems. We applied our methodology on a data sample extracted from the ADHD-200 collection, through the development of decision trees which are valued for their readability. Our analysis indicates the relevance of the limbic system for the diagnosis of the disorder. Moreover, while providing explanations that make sense, the resulting decision tree performs favorably given the recent results reported in the literature." @default.
- W2941056772 created "2019-05-03" @default.
- W2941056772 creator A5034563912 @default.
- W2941056772 creator A5039018289 @default.
- W2941056772 creator A5046467069 @default.
- W2941056772 creator A5059290086 @default.
- W2941056772 date "2019-04-25" @default.
- W2941056772 modified "2023-10-05" @default.
- W2941056772 title "Towards interpretable machine learning models for diagnosis aid: A case study on attention deficit/hyperactivity disorder" @default.
- W2941056772 cites W1167300005 @default.
- W2941056772 cites W1549388972 @default.
- W2941056772 cites W1560723556 @default.
- W2941056772 cites W1584935767 @default.
- W2941056772 cites W1970796985 @default.
- W2941056772 cites W1973287125 @default.
- W2941056772 cites W1977715475 @default.
- W2941056772 cites W1988727702 @default.
- W2941056772 cites W1993852293 @default.
- W2941056772 cites W2004672717 @default.
- W2941056772 cites W2005821483 @default.
- W2941056772 cites W2007733743 @default.
- W2941056772 cites W2010549559 @default.
- W2941056772 cites W2011402106 @default.
- W2941056772 cites W2012330206 @default.
- W2941056772 cites W2012538506 @default.
- W2941056772 cites W2017854344 @default.
- W2941056772 cites W2027299889 @default.
- W2941056772 cites W2028251299 @default.
- W2941056772 cites W2028470648 @default.
- W2941056772 cites W2032991527 @default.
- W2941056772 cites W2033372889 @default.
- W2941056772 cites W2034430310 @default.
- W2941056772 cites W2035193033 @default.
- W2941056772 cites W2038574879 @default.
- W2941056772 cites W2040412343 @default.
- W2941056772 cites W2043699623 @default.
- W2941056772 cites W2045989120 @default.
- W2941056772 cites W2058046532 @default.
- W2941056772 cites W2075588526 @default.
- W2941056772 cites W2084515485 @default.
- W2941056772 cites W2087422905 @default.
- W2941056772 cites W2095782630 @default.
- W2941056772 cites W2096972053 @default.
- W2941056772 cites W2097559385 @default.
- W2941056772 cites W2114684724 @default.
- W2941056772 cites W2116763473 @default.
- W2941056772 cites W2117004913 @default.
- W2941056772 cites W2119315254 @default.
- W2941056772 cites W2120866479 @default.
- W2941056772 cites W2124984162 @default.
- W2941056772 cites W2126142057 @default.
- W2941056772 cites W2135264250 @default.
- W2941056772 cites W2136022845 @default.
- W2941056772 cites W2140856358 @default.
- W2941056772 cites W2143882983 @default.
- W2941056772 cites W2146146074 @default.
- W2941056772 cites W2148015168 @default.
- W2941056772 cites W2148334755 @default.
- W2941056772 cites W2151036885 @default.
- W2941056772 cites W2156645869 @default.
- W2941056772 cites W2162010696 @default.
- W2941056772 cites W2165250079 @default.
- W2941056772 cites W2169365377 @default.
- W2941056772 cites W2227520796 @default.
- W2941056772 cites W2273663424 @default.
- W2941056772 cites W2281762137 @default.
- W2941056772 cites W2340986419 @default.
- W2941056772 cites W2424628474 @default.
- W2941056772 cites W2518410112 @default.
- W2941056772 cites W2590328111 @default.
- W2941056772 cites W2602582143 @default.
- W2941056772 cites W2734256217 @default.
- W2941056772 cites W2751986434 @default.
- W2941056772 cites W2796628924 @default.
- W2941056772 cites W2895124230 @default.
- W2941056772 cites W2899369787 @default.
- W2941056772 cites W2950568021 @default.
- W2941056772 cites W3104887532 @default.
- W2941056772 cites W325835679 @default.
- W2941056772 cites W84586455 @default.
- W2941056772 doi "https://doi.org/10.1371/journal.pone.0215720" @default.
- W2941056772 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6483231" @default.
- W2941056772 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31022245" @default.
- W2941056772 hasPublicationYear "2019" @default.
- W2941056772 type Work @default.
- W2941056772 sameAs 2941056772 @default.
- W2941056772 citedByCount "23" @default.
- W2941056772 countsByYear W29410567722019 @default.
- W2941056772 countsByYear W29410567722020 @default.
- W2941056772 countsByYear W29410567722021 @default.
- W2941056772 countsByYear W29410567722022 @default.
- W2941056772 countsByYear W29410567722023 @default.
- W2941056772 crossrefType "journal-article" @default.
- W2941056772 hasAuthorship W2941056772A5034563912 @default.
- W2941056772 hasAuthorship W2941056772A5039018289 @default.
- W2941056772 hasAuthorship W2941056772A5046467069 @default.
- W2941056772 hasAuthorship W2941056772A5059290086 @default.
- W2941056772 hasBestOaLocation W29410567721 @default.