Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941123315> ?p ?o ?g. }
- W2941123315 endingPage "465" @default.
- W2941123315 startingPage "457" @default.
- W2941123315 abstract "In aquaculture, information on fish appetite is of great significance for guiding feeding and production practices. However, most fish appetite assessment methods are inefficient and subjective. To solve these problems, in this study, an automatic method for grading fish feeding intensity based on a convolutional neural network (CNN) and machine vision is proposed to evaluate fish appetite. The specific implementation process was as follows. First, images were collected during the feeding process, and a dataset was constructed and extended using rotation, scale, and translation (RST) augmentation techniques and noise-invariant data expansion. Then, a CNN was trained on the training dataset, and the fish appetite levels were graded using the trained CNN model. Finally, the performance of the method was evaluated and compared with other quantitative and qualitative feeding intensity assessment methods. The results show that the grading accuracy reached 90%; thus, the model can be used to detect and evaluate fish appetite to guide production practices." @default.
- W2941123315 created "2019-05-03" @default.
- W2941123315 creator A5000159988 @default.
- W2941123315 creator A5002765632 @default.
- W2941123315 creator A5019280085 @default.
- W2941123315 creator A5027195747 @default.
- W2941123315 creator A5047311306 @default.
- W2941123315 creator A5071008544 @default.
- W2941123315 creator A5076801794 @default.
- W2941123315 date "2019-05-01" @default.
- W2941123315 modified "2023-09-27" @default.
- W2941123315 title "Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision" @default.
- W2941123315 cites W1859669171 @default.
- W2941123315 cites W1968620036 @default.
- W2941123315 cites W1992629369 @default.
- W2941123315 cites W1993919857 @default.
- W2941123315 cites W2007239439 @default.
- W2941123315 cites W2023621478 @default.
- W2941123315 cites W2044465660 @default.
- W2941123315 cites W2051767235 @default.
- W2941123315 cites W2060233119 @default.
- W2941123315 cites W2062282152 @default.
- W2941123315 cites W2082203010 @default.
- W2941123315 cites W2093564341 @default.
- W2941123315 cites W2108985375 @default.
- W2941123315 cites W2112796928 @default.
- W2941123315 cites W2124258926 @default.
- W2941123315 cites W2186155590 @default.
- W2941123315 cites W2194775991 @default.
- W2941123315 cites W2285671993 @default.
- W2941123315 cites W2290108831 @default.
- W2941123315 cites W2306402927 @default.
- W2941123315 cites W2463355256 @default.
- W2941123315 cites W2486664415 @default.
- W2941123315 cites W2522256182 @default.
- W2941123315 cites W2522439684 @default.
- W2941123315 cites W2551537150 @default.
- W2941123315 cites W2589255103 @default.
- W2941123315 cites W2728026583 @default.
- W2941123315 cites W2741682658 @default.
- W2941123315 cites W2765716772 @default.
- W2941123315 cites W2768542258 @default.
- W2941123315 cites W2790639095 @default.
- W2941123315 cites W2791905659 @default.
- W2941123315 cites W2795250396 @default.
- W2941123315 cites W2799332695 @default.
- W2941123315 cites W2799416393 @default.
- W2941123315 cites W2799423120 @default.
- W2941123315 cites W2885255554 @default.
- W2941123315 cites W2919115771 @default.
- W2941123315 doi "https://doi.org/10.1016/j.aquaculture.2019.04.056" @default.
- W2941123315 hasPublicationYear "2019" @default.
- W2941123315 type Work @default.
- W2941123315 sameAs 2941123315 @default.
- W2941123315 citedByCount "84" @default.
- W2941123315 countsByYear W29411233152019 @default.
- W2941123315 countsByYear W29411233152020 @default.
- W2941123315 countsByYear W29411233152021 @default.
- W2941123315 countsByYear W29411233152022 @default.
- W2941123315 countsByYear W29411233152023 @default.
- W2941123315 crossrefType "journal-article" @default.
- W2941123315 hasAuthorship W2941123315A5000159988 @default.
- W2941123315 hasAuthorship W2941123315A5002765632 @default.
- W2941123315 hasAuthorship W2941123315A5019280085 @default.
- W2941123315 hasAuthorship W2941123315A5027195747 @default.
- W2941123315 hasAuthorship W2941123315A5047311306 @default.
- W2941123315 hasAuthorship W2941123315A5071008544 @default.
- W2941123315 hasAuthorship W2941123315A5076801794 @default.
- W2941123315 hasConcept C134018914 @default.
- W2941123315 hasConcept C153180895 @default.
- W2941123315 hasConcept C154945302 @default.
- W2941123315 hasConcept C18903297 @default.
- W2941123315 hasConcept C2777286243 @default.
- W2941123315 hasConcept C2909208804 @default.
- W2941123315 hasConcept C41008148 @default.
- W2941123315 hasConcept C505870484 @default.
- W2941123315 hasConcept C50644808 @default.
- W2941123315 hasConcept C75908981 @default.
- W2941123315 hasConcept C81363708 @default.
- W2941123315 hasConcept C86803240 @default.
- W2941123315 hasConcept C86909935 @default.
- W2941123315 hasConceptScore W2941123315C134018914 @default.
- W2941123315 hasConceptScore W2941123315C153180895 @default.
- W2941123315 hasConceptScore W2941123315C154945302 @default.
- W2941123315 hasConceptScore W2941123315C18903297 @default.
- W2941123315 hasConceptScore W2941123315C2777286243 @default.
- W2941123315 hasConceptScore W2941123315C2909208804 @default.
- W2941123315 hasConceptScore W2941123315C41008148 @default.
- W2941123315 hasConceptScore W2941123315C505870484 @default.
- W2941123315 hasConceptScore W2941123315C50644808 @default.
- W2941123315 hasConceptScore W2941123315C75908981 @default.
- W2941123315 hasConceptScore W2941123315C81363708 @default.
- W2941123315 hasConceptScore W2941123315C86803240 @default.
- W2941123315 hasConceptScore W2941123315C86909935 @default.
- W2941123315 hasLocation W29411233151 @default.
- W2941123315 hasOpenAccess W2941123315 @default.
- W2941123315 hasPrimaryLocation W29411233151 @default.
- W2941123315 hasRelatedWork W2175746458 @default.