Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941162019> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2941162019 abstract "Chronic diseases are one of the biggest threats to human life. It is clinically significant to predict the chronic disease prior to diagnosis time and take effective therapy as early as possible. In this work, we use problem transform methods to convert the chronic diseases prediction into a multi-label classification problem and propose a novel convolutional neural network (CNN) architecture named GroupNet to solve the multi-label chronic disease classification problem. Binary Relevance (BR) and Label Powerset (LP) methods are adopted to transform multiple chronic disease labels. We present the correlated loss as the loss function used in the GroupNet, which integrates the correlation coefficient between different diseases. The experiments are conducted on the physical examination datasets collected from a local medical center. In the experiments, we compare GroupNet with other methods and models. GroupNet outperforms others and achieves the best accuracy of 81.13%." @default.
- W2941162019 created "2019-05-03" @default.
- W2941162019 creator A5030428842 @default.
- W2941162019 creator A5030699864 @default.
- W2941162019 creator A5072211414 @default.
- W2941162019 creator A5082924617 @default.
- W2941162019 date "2019-04-24" @default.
- W2941162019 modified "2023-10-12" @default.
- W2941162019 title "A Novel Deep Neural Network Model for Multi-Label Chronic Disease Prediction" @default.
- W2941162019 cites W1990652932 @default.
- W2941162019 cites W1992650721 @default.
- W2941162019 cites W2097117768 @default.
- W2941162019 cites W2114315281 @default.
- W2941162019 cites W2119466907 @default.
- W2941162019 cites W2146241755 @default.
- W2941162019 cites W2154634442 @default.
- W2941162019 cites W2404901863 @default.
- W2941162019 cites W2550897584 @default.
- W2941162019 cites W2612402313 @default.
- W2941162019 cites W2618530766 @default.
- W2941162019 cites W2625625371 @default.
- W2941162019 cites W2626450301 @default.
- W2941162019 cites W2776922069 @default.
- W2941162019 cites W2778955544 @default.
- W2941162019 cites W2783350994 @default.
- W2941162019 cites W2793870081 @default.
- W2941162019 cites W2884561390 @default.
- W2941162019 cites W2963163009 @default.
- W2941162019 cites W2963216524 @default.
- W2941162019 cites W2963446712 @default.
- W2941162019 cites W2964050365 @default.
- W2941162019 doi "https://doi.org/10.3389/fgene.2019.00351" @default.
- W2941162019 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6491565" @default.
- W2941162019 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31068968" @default.
- W2941162019 hasPublicationYear "2019" @default.
- W2941162019 type Work @default.
- W2941162019 sameAs 2941162019 @default.
- W2941162019 citedByCount "26" @default.
- W2941162019 countsByYear W29411620192020 @default.
- W2941162019 countsByYear W29411620192021 @default.
- W2941162019 countsByYear W29411620192022 @default.
- W2941162019 countsByYear W29411620192023 @default.
- W2941162019 crossrefType "journal-article" @default.
- W2941162019 hasAuthorship W2941162019A5030428842 @default.
- W2941162019 hasAuthorship W2941162019A5030699864 @default.
- W2941162019 hasAuthorship W2941162019A5072211414 @default.
- W2941162019 hasAuthorship W2941162019A5082924617 @default.
- W2941162019 hasBestOaLocation W29411620191 @default.
- W2941162019 hasConcept C119857082 @default.
- W2941162019 hasConcept C12267149 @default.
- W2941162019 hasConcept C153180895 @default.
- W2941162019 hasConcept C154945302 @default.
- W2941162019 hasConcept C2776482837 @default.
- W2941162019 hasConcept C2987552334 @default.
- W2941162019 hasConcept C41008148 @default.
- W2941162019 hasConcept C50644808 @default.
- W2941162019 hasConcept C512399662 @default.
- W2941162019 hasConcept C66905080 @default.
- W2941162019 hasConcept C71924100 @default.
- W2941162019 hasConcept C81363708 @default.
- W2941162019 hasConceptScore W2941162019C119857082 @default.
- W2941162019 hasConceptScore W2941162019C12267149 @default.
- W2941162019 hasConceptScore W2941162019C153180895 @default.
- W2941162019 hasConceptScore W2941162019C154945302 @default.
- W2941162019 hasConceptScore W2941162019C2776482837 @default.
- W2941162019 hasConceptScore W2941162019C2987552334 @default.
- W2941162019 hasConceptScore W2941162019C41008148 @default.
- W2941162019 hasConceptScore W2941162019C50644808 @default.
- W2941162019 hasConceptScore W2941162019C512399662 @default.
- W2941162019 hasConceptScore W2941162019C66905080 @default.
- W2941162019 hasConceptScore W2941162019C71924100 @default.
- W2941162019 hasConceptScore W2941162019C81363708 @default.
- W2941162019 hasLocation W29411620191 @default.
- W2941162019 hasLocation W29411620192 @default.
- W2941162019 hasLocation W29411620193 @default.
- W2941162019 hasLocation W29411620194 @default.
- W2941162019 hasOpenAccess W2941162019 @default.
- W2941162019 hasPrimaryLocation W29411620191 @default.
- W2941162019 hasRelatedWork W2241072627 @default.
- W2941162019 hasRelatedWork W2510206144 @default.
- W2941162019 hasRelatedWork W2739554176 @default.
- W2941162019 hasRelatedWork W2900338305 @default.
- W2941162019 hasRelatedWork W2993318283 @default.
- W2941162019 hasRelatedWork W3202613528 @default.
- W2941162019 hasRelatedWork W4205999209 @default.
- W2941162019 hasRelatedWork W4297182212 @default.
- W2941162019 hasRelatedWork W4308086152 @default.
- W2941162019 hasRelatedWork W4376528628 @default.
- W2941162019 hasVolume "10" @default.
- W2941162019 isParatext "false" @default.
- W2941162019 isRetracted "false" @default.
- W2941162019 magId "2941162019" @default.
- W2941162019 workType "article" @default.