Matches in SemOpenAlex for { <https://semopenalex.org/work/W2941172012> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2941172012 abstract "In this paper, an image object identification problem for the Kaggle Iceberg Classifier Challenge was tackled by deep neural network. Basic convolutional neural network (CNN) was implemented and tested firstly. Then, deeper networks including VGG16 and ResNet50 are adopted to improve the accuracy. The deep learning-based methods are also compared with the conventional machine learning method i.e. SVM (support Vector Machine). Three feature augmentation approaches are utilized and compared, i.e. incidence angle confusion of satellite radar signals, multi-band composition and data augmentation of the original image data. Tentative results by GAN (Generative Adversarial Network) and Capsule Network are also presented. Results demonstrate the applicability and superiority of CNN over the conventional method (SVM) on the given dataset." @default.
- W2941172012 created "2019-05-03" @default.
- W2941172012 creator A5046492827 @default.
- W2941172012 creator A5064950120 @default.
- W2941172012 date "2019-04-24" @default.
- W2941172012 modified "2023-09-27" @default.
- W2941172012 title "Iceberg Detection by CNN Based on Incidence-Angle Confusion" @default.
- W2941172012 cites W1571809481 @default.
- W2941172012 cites W1849277567 @default.
- W2941172012 cites W2038591350 @default.
- W2941172012 cites W2100495367 @default.
- W2941172012 cites W2112796928 @default.
- W2941172012 cites W2124648367 @default.
- W2941172012 cites W2163005659 @default.
- W2941172012 cites W2194775991 @default.
- W2941172012 doi "https://doi.org/10.1007/978-3-030-17798-0_6" @default.
- W2941172012 hasPublicationYear "2019" @default.
- W2941172012 type Work @default.
- W2941172012 sameAs 2941172012 @default.
- W2941172012 citedByCount "0" @default.
- W2941172012 crossrefType "book-chapter" @default.
- W2941172012 hasAuthorship W2941172012A5046492827 @default.
- W2941172012 hasAuthorship W2941172012A5064950120 @default.
- W2941172012 hasConcept C108583219 @default.
- W2941172012 hasConcept C11171543 @default.
- W2941172012 hasConcept C119857082 @default.
- W2941172012 hasConcept C12267149 @default.
- W2941172012 hasConcept C153180895 @default.
- W2941172012 hasConcept C154945302 @default.
- W2941172012 hasConcept C15744967 @default.
- W2941172012 hasConcept C2776151529 @default.
- W2941172012 hasConcept C2781140086 @default.
- W2941172012 hasConcept C2988773926 @default.
- W2941172012 hasConcept C41008148 @default.
- W2941172012 hasConcept C50644808 @default.
- W2941172012 hasConcept C52622490 @default.
- W2941172012 hasConcept C81363708 @default.
- W2941172012 hasConcept C95623464 @default.
- W2941172012 hasConceptScore W2941172012C108583219 @default.
- W2941172012 hasConceptScore W2941172012C11171543 @default.
- W2941172012 hasConceptScore W2941172012C119857082 @default.
- W2941172012 hasConceptScore W2941172012C12267149 @default.
- W2941172012 hasConceptScore W2941172012C153180895 @default.
- W2941172012 hasConceptScore W2941172012C154945302 @default.
- W2941172012 hasConceptScore W2941172012C15744967 @default.
- W2941172012 hasConceptScore W2941172012C2776151529 @default.
- W2941172012 hasConceptScore W2941172012C2781140086 @default.
- W2941172012 hasConceptScore W2941172012C2988773926 @default.
- W2941172012 hasConceptScore W2941172012C41008148 @default.
- W2941172012 hasConceptScore W2941172012C50644808 @default.
- W2941172012 hasConceptScore W2941172012C52622490 @default.
- W2941172012 hasConceptScore W2941172012C81363708 @default.
- W2941172012 hasConceptScore W2941172012C95623464 @default.
- W2941172012 hasLocation W29411720121 @default.
- W2941172012 hasOpenAccess W2941172012 @default.
- W2941172012 hasPrimaryLocation W29411720121 @default.
- W2941172012 hasRelatedWork W2009549839 @default.
- W2941172012 hasRelatedWork W2125066085 @default.
- W2941172012 hasRelatedWork W2563096758 @default.
- W2941172012 hasRelatedWork W2736486815 @default.
- W2941172012 hasRelatedWork W2800418023 @default.
- W2941172012 hasRelatedWork W2896380479 @default.
- W2941172012 hasRelatedWork W2904944422 @default.
- W2941172012 hasRelatedWork W2918790509 @default.
- W2941172012 hasRelatedWork W2941913704 @default.
- W2941172012 hasRelatedWork W2963279936 @default.
- W2941172012 hasRelatedWork W3000593981 @default.
- W2941172012 hasRelatedWork W3016535419 @default.
- W2941172012 hasRelatedWork W3034564784 @default.
- W2941172012 hasRelatedWork W3056875843 @default.
- W2941172012 hasRelatedWork W3094792029 @default.
- W2941172012 hasRelatedWork W3132368637 @default.
- W2941172012 hasRelatedWork W3162909563 @default.
- W2941172012 hasRelatedWork W3179796550 @default.
- W2941172012 hasRelatedWork W2967631452 @default.
- W2941172012 hasRelatedWork W3018928797 @default.
- W2941172012 isParatext "false" @default.
- W2941172012 isRetracted "false" @default.
- W2941172012 magId "2941172012" @default.
- W2941172012 workType "book-chapter" @default.